Spaces:
Running
on
Zero
Running
on
Zero
ResearcherXman
commited on
Commit
•
ec7fc1c
1
Parent(s):
f4fab1d
support lcm and multi-controlnets
Browse files- app.py +284 -128
- controlnet_util.py +39 -0
- gradio_cached_examples/25/Generated Image/2880a3d19ef9b42e3ed2/image.png +0 -3
- gradio_cached_examples/25/Generated Image/38dde1388c41109c5d39/image.png +0 -3
- gradio_cached_examples/25/Generated Image/6cb5a3af223906666bfd/image.png +0 -3
- gradio_cached_examples/25/Generated Image/7e6ea85f77dd925d842c/image.png +0 -3
- gradio_cached_examples/25/Generated Image/e56b029833685ff77e6a/image.png +0 -3
- gradio_cached_examples/25/log.csv +0 -6
- ip_adapter/attention_processor.py +146 -8
- model_util.py +472 -0
- pipeline_stable_diffusion_xl_instantid.py → pipeline_stable_diffusion_xl_instantid_full.py +102 -21
- requirements.txt +7 -3
app.py
CHANGED
@@ -1,23 +1,34 @@
|
|
1 |
-
import
|
2 |
-
import random
|
3 |
-
|
4 |
import cv2
|
5 |
-
import
|
|
|
6 |
import numpy as np
|
|
|
7 |
import PIL
|
8 |
-
import
|
9 |
-
|
10 |
-
|
11 |
from diffusers.utils import load_image
|
|
|
|
|
|
|
|
|
|
|
12 |
from insightface.app import FaceAnalysis
|
13 |
-
from PIL import Image
|
14 |
|
15 |
-
from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline
|
16 |
from style_template import styles
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
# global variable
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
-
device =
|
|
|
21 |
STYLE_NAMES = list(styles.keys())
|
22 |
DEFAULT_STYLE_NAME = "Watercolor"
|
23 |
|
@@ -33,69 +44,120 @@ hf_hub_download(
|
|
33 |
hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints")
|
34 |
|
35 |
# Load face encoder
|
36 |
-
app = FaceAnalysis(
|
|
|
|
|
|
|
|
|
37 |
app.prepare(ctx_id=0, det_size=(640, 640))
|
38 |
|
39 |
# Path to InstantID models
|
40 |
-
face_adapter = "./checkpoints/ip-adapter.bin"
|
41 |
-
controlnet_path = "./checkpoints/ControlNetModel"
|
42 |
|
43 |
-
# Load pipeline
|
44 |
-
|
|
|
|
|
45 |
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
|
49 |
-
|
50 |
-
controlnet=
|
51 |
-
torch_dtype=
|
52 |
safety_checker=None,
|
53 |
feature_extractor=None,
|
|
|
|
|
|
|
|
|
54 |
)
|
55 |
-
pipe.cuda()
|
56 |
-
pipe.load_ip_adapter_instantid(face_adapter)
|
57 |
-
pipe.image_proj_model.to("cuda")
|
58 |
-
pipe.unet.to("cuda")
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
62 |
if randomize_seed:
|
63 |
seed = random.randint(0, MAX_SEED)
|
64 |
return seed
|
65 |
|
66 |
-
|
67 |
def remove_tips():
|
68 |
return gr.update(visible=False)
|
69 |
|
70 |
-
|
71 |
def get_example():
|
72 |
case = [
|
73 |
[
|
74 |
"./examples/yann-lecun_resize.jpg",
|
|
|
75 |
"a man",
|
76 |
"Snow",
|
77 |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
78 |
],
|
79 |
[
|
80 |
"./examples/musk_resize.jpeg",
|
81 |
-
"
|
|
|
82 |
"Mars",
|
83 |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
84 |
],
|
85 |
[
|
86 |
"./examples/sam_resize.png",
|
87 |
-
"
|
|
|
88 |
"Jungle",
|
89 |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, gree",
|
90 |
],
|
91 |
[
|
92 |
"./examples/schmidhuber_resize.png",
|
93 |
-
"
|
|
|
94 |
"Neon",
|
95 |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
96 |
],
|
97 |
[
|
98 |
"./examples/kaifu_resize.png",
|
|
|
99 |
"a man",
|
100 |
"Vibrant Color",
|
101 |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
@@ -103,50 +165,33 @@ def get_example():
|
|
103 |
]
|
104 |
return case
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
def convert_from_cv2_to_image(img: np.ndarray) -> Image:
|
112 |
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
113 |
|
114 |
-
|
115 |
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
|
116 |
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
117 |
|
118 |
-
|
119 |
-
def draw_kps(image_pil, kps, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]):
|
120 |
-
stickwidth = 4
|
121 |
-
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
|
122 |
-
kps = np.array(kps)
|
123 |
-
|
124 |
-
w, h = image_pil.size
|
125 |
-
out_img = np.zeros([h, w, 3])
|
126 |
-
|
127 |
-
for i in range(len(limbSeq)):
|
128 |
-
index = limbSeq[i]
|
129 |
-
color = color_list[index[0]]
|
130 |
-
|
131 |
-
x = kps[index][:, 0]
|
132 |
-
y = kps[index][:, 1]
|
133 |
-
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
|
134 |
-
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
|
135 |
-
polygon = cv2.ellipse2Poly(
|
136 |
-
(int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1
|
137 |
-
)
|
138 |
-
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
|
139 |
-
out_img = (out_img * 0.6).astype(np.uint8)
|
140 |
-
|
141 |
-
for idx_kp, kp in enumerate(kps):
|
142 |
-
color = color_list[idx_kp]
|
143 |
-
x, y = kp
|
144 |
-
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
|
145 |
-
|
146 |
-
out_img_pil = Image.fromarray(out_img.astype(np.uint8))
|
147 |
-
return out_img_pil
|
148 |
-
|
149 |
-
|
150 |
def resize_img(
|
151 |
input_image,
|
152 |
max_side=1280,
|
@@ -172,21 +217,18 @@ def resize_img(
|
|
172 |
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
|
173 |
offset_x = (max_side - w_resize_new) // 2
|
174 |
offset_y = (max_side - h_resize_new) // 2
|
175 |
-
res[
|
|
|
|
|
176 |
input_image = Image.fromarray(res)
|
177 |
return input_image
|
178 |
|
179 |
-
|
180 |
-
|
|
|
181 |
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
182 |
return p.replace("{prompt}", positive), n + " " + negative
|
183 |
|
184 |
-
|
185 |
-
def check_input_image(face_image):
|
186 |
-
if face_image is None:
|
187 |
-
raise gr.Error("Cannot find any input face image! Please upload the face image")
|
188 |
-
|
189 |
-
|
190 |
@spaces.GPU
|
191 |
def generate_image(
|
192 |
face_image_path,
|
@@ -194,14 +236,41 @@ def generate_image(
|
|
194 |
prompt,
|
195 |
negative_prompt,
|
196 |
style_name,
|
197 |
-
enhance_face_region,
|
198 |
num_steps,
|
199 |
identitynet_strength_ratio,
|
200 |
adapter_strength_ratio,
|
|
|
|
|
|
|
|
|
201 |
guidance_scale,
|
202 |
seed,
|
|
|
|
|
|
|
203 |
progress=gr.Progress(track_tqdm=True),
|
204 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
if prompt is None:
|
206 |
prompt = "a person"
|
207 |
|
@@ -209,7 +278,7 @@ def generate_image(
|
|
209 |
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
|
210 |
|
211 |
face_image = load_image(face_image_path)
|
212 |
-
face_image = resize_img(face_image)
|
213 |
face_image_cv2 = convert_from_image_to_cv2(face_image)
|
214 |
height, width, _ = face_image_cv2.shape
|
215 |
|
@@ -217,23 +286,31 @@ def generate_image(
|
|
217 |
face_info = app.get(face_image_cv2)
|
218 |
|
219 |
if len(face_info) == 0:
|
220 |
-
raise gr.Error(
|
|
|
|
|
221 |
|
222 |
-
face_info = sorted(
|
|
|
|
|
|
|
223 |
-1
|
224 |
] # only use the maximum face
|
225 |
face_emb = face_info["embedding"]
|
226 |
face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info["kps"])
|
227 |
-
|
228 |
if pose_image_path is not None:
|
229 |
pose_image = load_image(pose_image_path)
|
230 |
-
pose_image = resize_img(pose_image)
|
|
|
231 |
pose_image_cv2 = convert_from_image_to_cv2(pose_image)
|
232 |
|
233 |
face_info = app.get(pose_image_cv2)
|
234 |
|
235 |
if len(face_info) == 0:
|
236 |
-
raise gr.Error(
|
|
|
|
|
237 |
|
238 |
face_info = face_info[-1]
|
239 |
face_kps = draw_kps(pose_image, face_info["kps"])
|
@@ -249,6 +326,28 @@ def generate_image(
|
|
249 |
else:
|
250 |
control_mask = None
|
251 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
generator = torch.Generator(device=device).manual_seed(seed)
|
253 |
|
254 |
print("Start inference...")
|
@@ -259,9 +358,9 @@ def generate_image(
|
|
259 |
prompt=prompt,
|
260 |
negative_prompt=negative_prompt,
|
261 |
image_embeds=face_emb,
|
262 |
-
image=
|
263 |
control_mask=control_mask,
|
264 |
-
controlnet_conditioning_scale=
|
265 |
num_inference_steps=num_steps,
|
266 |
guidance_scale=guidance_scale,
|
267 |
height=height,
|
@@ -271,8 +370,7 @@ def generate_image(
|
|
271 |
|
272 |
return images[0], gr.update(visible=True)
|
273 |
|
274 |
-
|
275 |
-
### Description
|
276 |
title = r"""
|
277 |
<h1 align="center">InstantID: Zero-shot Identity-Preserving Generation in Seconds</h1>
|
278 |
"""
|
@@ -281,12 +379,12 @@ description = r"""
|
|
281 |
<b>Official 🤗 Gradio demo</b> for <a href='https://github.com/InstantID/InstantID' target='_blank'><b>InstantID: Zero-shot Identity-Preserving Generation in Seconds</b></a>.<br>
|
282 |
|
283 |
How to use:<br>
|
284 |
-
1. Upload a
|
285 |
-
2. (
|
286 |
-
3.
|
287 |
-
4.
|
288 |
-
5.
|
289 |
-
"""
|
290 |
|
291 |
article = r"""
|
292 |
---
|
@@ -295,10 +393,10 @@ article = r"""
|
|
295 |
If our work is helpful for your research or applications, please cite us via:
|
296 |
```bibtex
|
297 |
@article{wang2024instantid,
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
}
|
303 |
```
|
304 |
📧 **Contact**
|
@@ -308,10 +406,10 @@ If you have any questions, please feel free to open an issue or directly reach u
|
|
308 |
|
309 |
tips = r"""
|
310 |
### Usage tips of InstantID
|
311 |
-
1. If you're
|
312 |
-
2. If the
|
313 |
-
3. If text control is not as expected, decrease
|
314 |
-
4.
|
315 |
"""
|
316 |
|
317 |
css = """
|
@@ -324,27 +422,39 @@ with gr.Blocks(css=css) as demo:
|
|
324 |
|
325 |
with gr.Row():
|
326 |
with gr.Column():
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
|
|
|
|
|
|
|
|
|
|
332 |
|
333 |
# prompt
|
334 |
prompt = gr.Textbox(
|
335 |
label="Prompt",
|
336 |
-
info="Give simple prompt is enough to achieve good face
|
337 |
placeholder="A photo of a person",
|
338 |
value="",
|
339 |
)
|
340 |
|
341 |
submit = gr.Button("Submit", variant="primary")
|
342 |
-
|
343 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
|
345 |
# strength
|
346 |
identitynet_strength_ratio = gr.Slider(
|
347 |
-
label="IdentityNet strength (for
|
348 |
minimum=0,
|
349 |
maximum=1.5,
|
350 |
step=0.05,
|
@@ -357,26 +467,51 @@ with gr.Blocks(css=css) as demo:
|
|
357 |
step=0.05,
|
358 |
value=0.80,
|
359 |
)
|
360 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
361 |
with gr.Accordion(open=False, label="Advanced Options"):
|
362 |
negative_prompt = gr.Textbox(
|
363 |
label="Negative Prompt",
|
364 |
placeholder="low quality",
|
365 |
-
value="(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed,
|
366 |
)
|
367 |
num_steps = gr.Slider(
|
368 |
label="Number of sample steps",
|
369 |
-
minimum=
|
370 |
maximum=100,
|
371 |
step=1,
|
372 |
-
value=30,
|
373 |
)
|
374 |
guidance_scale = gr.Slider(
|
375 |
label="Guidance scale",
|
376 |
minimum=0.1,
|
377 |
-
maximum=
|
378 |
step=0.1,
|
379 |
-
value=5,
|
380 |
)
|
381 |
seed = gr.Slider(
|
382 |
label="Seed",
|
@@ -385,18 +520,31 @@ with gr.Blocks(css=css) as demo:
|
|
385 |
step=1,
|
386 |
value=42,
|
387 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
388 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
389 |
enhance_face_region = gr.Checkbox(label="Enhance non-face region", value=True)
|
390 |
|
391 |
-
with gr.Column():
|
392 |
-
|
393 |
-
usage_tips = gr.Markdown(
|
|
|
|
|
394 |
|
395 |
submit.click(
|
396 |
fn=remove_tips,
|
397 |
outputs=usage_tips,
|
398 |
-
queue=False,
|
399 |
-
api_name=False,
|
400 |
).then(
|
401 |
fn=randomize_seed_fn,
|
402 |
inputs=[seed, randomize_seed],
|
@@ -404,11 +552,6 @@ with gr.Blocks(css=css) as demo:
|
|
404 |
queue=False,
|
405 |
api_name=False,
|
406 |
).then(
|
407 |
-
fn=check_input_image,
|
408 |
-
inputs=face_file,
|
409 |
-
queue=False,
|
410 |
-
api_name=False,
|
411 |
-
).success(
|
412 |
fn=generate_image,
|
413 |
inputs=[
|
414 |
face_file,
|
@@ -416,21 +559,34 @@ with gr.Blocks(css=css) as demo:
|
|
416 |
prompt,
|
417 |
negative_prompt,
|
418 |
style,
|
419 |
-
enhance_face_region,
|
420 |
num_steps,
|
421 |
identitynet_strength_ratio,
|
422 |
adapter_strength_ratio,
|
|
|
|
|
|
|
|
|
423 |
guidance_scale,
|
424 |
seed,
|
|
|
|
|
|
|
425 |
],
|
426 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
427 |
)
|
428 |
|
429 |
gr.Examples(
|
430 |
examples=get_example(),
|
431 |
-
inputs=[face_file, prompt, style, negative_prompt],
|
432 |
-
outputs=[output_image, usage_tips],
|
433 |
fn=run_for_examples,
|
|
|
434 |
cache_examples=True,
|
435 |
)
|
436 |
|
|
|
1 |
+
import os
|
|
|
|
|
2 |
import cv2
|
3 |
+
import torch
|
4 |
+
import random
|
5 |
import numpy as np
|
6 |
+
|
7 |
import PIL
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
import diffusers
|
11 |
from diffusers.utils import load_image
|
12 |
+
from diffusers.models import ControlNetModel
|
13 |
+
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
|
14 |
+
|
15 |
+
from huggingface_hub import hf_hub_download
|
16 |
+
|
17 |
from insightface.app import FaceAnalysis
|
|
|
18 |
|
|
|
19 |
from style_template import styles
|
20 |
+
from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline, draw_kps
|
21 |
+
from model_util import load_models_xl, get_torch_device
|
22 |
+
from controlnet_util import openpose, get_depth_map, get_canny_image
|
23 |
+
|
24 |
+
import gradio as gr
|
25 |
+
|
26 |
+
import spaces
|
27 |
|
28 |
# global variable
|
29 |
MAX_SEED = np.iinfo(np.int32).max
|
30 |
+
device = get_torch_device()
|
31 |
+
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
|
32 |
STYLE_NAMES = list(styles.keys())
|
33 |
DEFAULT_STYLE_NAME = "Watercolor"
|
34 |
|
|
|
44 |
hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints")
|
45 |
|
46 |
# Load face encoder
|
47 |
+
app = FaceAnalysis(
|
48 |
+
name="antelopev2",
|
49 |
+
root="./",
|
50 |
+
providers=["CUDAExecutionProvider", "CPUExecutionProvider"],
|
51 |
+
)
|
52 |
app.prepare(ctx_id=0, det_size=(640, 640))
|
53 |
|
54 |
# Path to InstantID models
|
55 |
+
face_adapter = f"./checkpoints/ip-adapter.bin"
|
56 |
+
controlnet_path = f"./checkpoints/ControlNetModel"
|
57 |
|
58 |
+
# Load pipeline face ControlNetModel
|
59 |
+
controlnet_identitynet = ControlNetModel.from_pretrained(
|
60 |
+
controlnet_path, torch_dtype=dtype
|
61 |
+
)
|
62 |
|
63 |
+
# controlnet-pose
|
64 |
+
controlnet_pose_model = "thibaud/controlnet-openpose-sdxl-1.0"
|
65 |
+
controlnet_canny_model = "diffusers/controlnet-canny-sdxl-1.0"
|
66 |
+
controlnet_depth_model = "diffusers/controlnet-depth-sdxl-1.0-small"
|
67 |
+
|
68 |
+
controlnet_pose = ControlNetModel.from_pretrained(
|
69 |
+
controlnet_pose_model, torch_dtype=dtype
|
70 |
+
).to(device)
|
71 |
+
controlnet_canny = ControlNetModel.from_pretrained(
|
72 |
+
controlnet_canny_model, torch_dtype=dtype
|
73 |
+
).to(device)
|
74 |
+
controlnet_depth = ControlNetModel.from_pretrained(
|
75 |
+
controlnet_depth_model, torch_dtype=dtype
|
76 |
+
).to(device)
|
77 |
+
|
78 |
+
controlnet_map = {
|
79 |
+
"pose": controlnet_pose,
|
80 |
+
"canny": controlnet_canny,
|
81 |
+
"depth": controlnet_depth,
|
82 |
+
}
|
83 |
+
controlnet_map_fn = {
|
84 |
+
"pose": openpose,
|
85 |
+
"canny": get_canny_image,
|
86 |
+
"depth": get_depth_map,
|
87 |
+
}
|
88 |
+
|
89 |
+
pretrained_model_name_or_path = "wangqixun/YamerMIX_v8"
|
90 |
|
91 |
pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
|
92 |
+
pretrained_model_name_or_path,
|
93 |
+
controlnet=[controlnet_identitynet],
|
94 |
+
torch_dtype=dtype,
|
95 |
safety_checker=None,
|
96 |
feature_extractor=None,
|
97 |
+
).to(device)
|
98 |
+
|
99 |
+
pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(
|
100 |
+
pipe.scheduler.config
|
101 |
)
|
|
|
|
|
|
|
|
|
102 |
|
103 |
+
pipe.load_ip_adapter_instantid(face_adapter)
|
104 |
+
# load and disable LCM
|
105 |
+
pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
|
106 |
+
pipe.disable_lora()
|
107 |
+
|
108 |
+
def toggle_lcm_ui(value):
|
109 |
+
if value:
|
110 |
+
return (
|
111 |
+
gr.update(minimum=0, maximum=100, step=1, value=5),
|
112 |
+
gr.update(minimum=0.1, maximum=20.0, step=0.1, value=1.5),
|
113 |
+
)
|
114 |
+
else:
|
115 |
+
return (
|
116 |
+
gr.update(minimum=5, maximum=100, step=1, value=30),
|
117 |
+
gr.update(minimum=0.1, maximum=20.0, step=0.1, value=5),
|
118 |
+
)
|
119 |
|
120 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
121 |
if randomize_seed:
|
122 |
seed = random.randint(0, MAX_SEED)
|
123 |
return seed
|
124 |
|
|
|
125 |
def remove_tips():
|
126 |
return gr.update(visible=False)
|
127 |
|
|
|
128 |
def get_example():
|
129 |
case = [
|
130 |
[
|
131 |
"./examples/yann-lecun_resize.jpg",
|
132 |
+
None,
|
133 |
"a man",
|
134 |
"Snow",
|
135 |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
136 |
],
|
137 |
[
|
138 |
"./examples/musk_resize.jpeg",
|
139 |
+
"./examples/poses/pose2.jpg",
|
140 |
+
"a man flying in the sky in Mars",
|
141 |
"Mars",
|
142 |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
143 |
],
|
144 |
[
|
145 |
"./examples/sam_resize.png",
|
146 |
+
"./examples/poses/pose4.jpg",
|
147 |
+
"a man doing a silly pose wearing a suite",
|
148 |
"Jungle",
|
149 |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, gree",
|
150 |
],
|
151 |
[
|
152 |
"./examples/schmidhuber_resize.png",
|
153 |
+
"./examples/poses/pose3.jpg",
|
154 |
+
"a man sit on a chair",
|
155 |
"Neon",
|
156 |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
157 |
],
|
158 |
[
|
159 |
"./examples/kaifu_resize.png",
|
160 |
+
"./examples/poses/pose.jpg",
|
161 |
"a man",
|
162 |
"Vibrant Color",
|
163 |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
|
|
165 |
]
|
166 |
return case
|
167 |
|
168 |
+
def run_for_examples(face_file, pose_file, prompt, style, negative_prompt):
|
169 |
+
return generate_image(
|
170 |
+
face_file,
|
171 |
+
pose_file,
|
172 |
+
prompt,
|
173 |
+
negative_prompt,
|
174 |
+
style,
|
175 |
+
20, # num_steps
|
176 |
+
0.8, # identitynet_strength_ratio
|
177 |
+
0.8, # adapter_strength_ratio
|
178 |
+
0.4, # pose_strength
|
179 |
+
0.3, # canny_strength
|
180 |
+
0.5, # depth_strength
|
181 |
+
["pose", "canny"], # controlnet_selection
|
182 |
+
5.0, # guidance_scale
|
183 |
+
42, # seed
|
184 |
+
"EulerDiscreteScheduler", # scheduler
|
185 |
+
False, # enable_LCM
|
186 |
+
True, # enable_Face_Region
|
187 |
+
)
|
188 |
|
189 |
def convert_from_cv2_to_image(img: np.ndarray) -> Image:
|
190 |
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
191 |
|
|
|
192 |
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
|
193 |
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
194 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
def resize_img(
|
196 |
input_image,
|
197 |
max_side=1280,
|
|
|
217 |
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
|
218 |
offset_x = (max_side - w_resize_new) // 2
|
219 |
offset_y = (max_side - h_resize_new) // 2
|
220 |
+
res[
|
221 |
+
offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new
|
222 |
+
] = np.array(input_image)
|
223 |
input_image = Image.fromarray(res)
|
224 |
return input_image
|
225 |
|
226 |
+
def apply_style(
|
227 |
+
style_name: str, positive: str, negative: str = ""
|
228 |
+
) -> tuple[str, str]:
|
229 |
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
230 |
return p.replace("{prompt}", positive), n + " " + negative
|
231 |
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
@spaces.GPU
|
233 |
def generate_image(
|
234 |
face_image_path,
|
|
|
236 |
prompt,
|
237 |
negative_prompt,
|
238 |
style_name,
|
|
|
239 |
num_steps,
|
240 |
identitynet_strength_ratio,
|
241 |
adapter_strength_ratio,
|
242 |
+
pose_strength,
|
243 |
+
canny_strength,
|
244 |
+
depth_strength,
|
245 |
+
controlnet_selection,
|
246 |
guidance_scale,
|
247 |
seed,
|
248 |
+
scheduler,
|
249 |
+
enable_LCM,
|
250 |
+
enhance_face_region,
|
251 |
progress=gr.Progress(track_tqdm=True),
|
252 |
):
|
253 |
+
|
254 |
+
if enable_LCM:
|
255 |
+
pipe.scheduler = diffusers.LCMScheduler.from_config(pipe.scheduler.config)
|
256 |
+
pipe.enable_lora()
|
257 |
+
else:
|
258 |
+
pipe.disable_lora()
|
259 |
+
scheduler_class_name = scheduler.split("-")[0]
|
260 |
+
|
261 |
+
add_kwargs = {}
|
262 |
+
if len(scheduler.split("-")) > 1:
|
263 |
+
add_kwargs["use_karras_sigmas"] = True
|
264 |
+
if len(scheduler.split("-")) > 2:
|
265 |
+
add_kwargs["algorithm_type"] = "sde-dpmsolver++"
|
266 |
+
scheduler = getattr(diffusers, scheduler_class_name)
|
267 |
+
pipe.scheduler = scheduler.from_config(pipe.scheduler.config, **add_kwargs)
|
268 |
+
|
269 |
+
if face_image_path is None:
|
270 |
+
raise gr.Error(
|
271 |
+
f"Cannot find any input face image! Please upload the face image"
|
272 |
+
)
|
273 |
+
|
274 |
if prompt is None:
|
275 |
prompt = "a person"
|
276 |
|
|
|
278 |
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
|
279 |
|
280 |
face_image = load_image(face_image_path)
|
281 |
+
face_image = resize_img(face_image, max_side=1024)
|
282 |
face_image_cv2 = convert_from_image_to_cv2(face_image)
|
283 |
height, width, _ = face_image_cv2.shape
|
284 |
|
|
|
286 |
face_info = app.get(face_image_cv2)
|
287 |
|
288 |
if len(face_info) == 0:
|
289 |
+
raise gr.Error(
|
290 |
+
f"Unable to detect a face in the image. Please upload a different photo with a clear face."
|
291 |
+
)
|
292 |
|
293 |
+
face_info = sorted(
|
294 |
+
face_info,
|
295 |
+
key=lambda x: (x["bbox"][2] - x["bbox"][0]) * x["bbox"][3] - x["bbox"][1],
|
296 |
+
)[
|
297 |
-1
|
298 |
] # only use the maximum face
|
299 |
face_emb = face_info["embedding"]
|
300 |
face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info["kps"])
|
301 |
+
img_controlnet = face_image
|
302 |
if pose_image_path is not None:
|
303 |
pose_image = load_image(pose_image_path)
|
304 |
+
pose_image = resize_img(pose_image, max_side=1024)
|
305 |
+
img_controlnet = pose_image
|
306 |
pose_image_cv2 = convert_from_image_to_cv2(pose_image)
|
307 |
|
308 |
face_info = app.get(pose_image_cv2)
|
309 |
|
310 |
if len(face_info) == 0:
|
311 |
+
raise gr.Error(
|
312 |
+
f"Cannot find any face in the reference image! Please upload another person image"
|
313 |
+
)
|
314 |
|
315 |
face_info = face_info[-1]
|
316 |
face_kps = draw_kps(pose_image, face_info["kps"])
|
|
|
326 |
else:
|
327 |
control_mask = None
|
328 |
|
329 |
+
if len(controlnet_selection) > 0:
|
330 |
+
controlnet_scales = {
|
331 |
+
"pose": pose_strength,
|
332 |
+
"canny": canny_strength,
|
333 |
+
"depth": depth_strength,
|
334 |
+
}
|
335 |
+
pipe.controlnet = MultiControlNetModel(
|
336 |
+
[controlnet_identitynet]
|
337 |
+
+ [controlnet_map[s] for s in controlnet_selection]
|
338 |
+
)
|
339 |
+
control_scales = [float(identitynet_strength_ratio)] + [
|
340 |
+
controlnet_scales[s] for s in controlnet_selection
|
341 |
+
]
|
342 |
+
control_images = [face_kps] + [
|
343 |
+
controlnet_map_fn[s](img_controlnet).resize((width, height))
|
344 |
+
for s in controlnet_selection
|
345 |
+
]
|
346 |
+
else:
|
347 |
+
pipe.controlnet = controlnet_identitynet
|
348 |
+
control_scales = float(identitynet_strength_ratio)
|
349 |
+
control_images = face_kps
|
350 |
+
|
351 |
generator = torch.Generator(device=device).manual_seed(seed)
|
352 |
|
353 |
print("Start inference...")
|
|
|
358 |
prompt=prompt,
|
359 |
negative_prompt=negative_prompt,
|
360 |
image_embeds=face_emb,
|
361 |
+
image=control_images,
|
362 |
control_mask=control_mask,
|
363 |
+
controlnet_conditioning_scale=control_scales,
|
364 |
num_inference_steps=num_steps,
|
365 |
guidance_scale=guidance_scale,
|
366 |
height=height,
|
|
|
370 |
|
371 |
return images[0], gr.update(visible=True)
|
372 |
|
373 |
+
# Description
|
|
|
374 |
title = r"""
|
375 |
<h1 align="center">InstantID: Zero-shot Identity-Preserving Generation in Seconds</h1>
|
376 |
"""
|
|
|
379 |
<b>Official 🤗 Gradio demo</b> for <a href='https://github.com/InstantID/InstantID' target='_blank'><b>InstantID: Zero-shot Identity-Preserving Generation in Seconds</b></a>.<br>
|
380 |
|
381 |
How to use:<br>
|
382 |
+
1. Upload an image with a face. For images with multiple faces, we will only detect the largest face. Ensure the face is not too small and is clearly visible without significant obstructions or blurring.
|
383 |
+
2. (Optional) You can upload another image as a reference for the face pose. If you don't, we will use the first detected face image to extract facial landmarks. If you use a cropped face at step 1, it is recommended to upload it to define a new face pose.
|
384 |
+
3. (Optional) You can select multiple ControlNet models to control the generation process. The default is to use the IdentityNet only. The ControlNet models include pose skeleton, canny, and depth. You can adjust the strength of each ControlNet model to control the generation process.
|
385 |
+
4. Enter a text prompt, as done in normal text-to-image models.
|
386 |
+
5. Click the <b>Submit</b> button to begin customization.
|
387 |
+
6. Share your customized photo with your friends and enjoy! 😊"""
|
388 |
|
389 |
article = r"""
|
390 |
---
|
|
|
393 |
If our work is helpful for your research or applications, please cite us via:
|
394 |
```bibtex
|
395 |
@article{wang2024instantid,
|
396 |
+
title={InstantID: Zero-shot Identity-Preserving Generation in Seconds},
|
397 |
+
author={Wang, Qixun and Bai, Xu and Wang, Haofan and Qin, Zekui and Chen, Anthony},
|
398 |
+
journal={arXiv preprint arXiv:2401.07519},
|
399 |
+
year={2024}
|
400 |
}
|
401 |
```
|
402 |
📧 **Contact**
|
|
|
406 |
|
407 |
tips = r"""
|
408 |
### Usage tips of InstantID
|
409 |
+
1. If you're not satisfied with the similarity, try increasing the weight of "IdentityNet Strength" and "Adapter Strength."
|
410 |
+
2. If you feel that the saturation is too high, first decrease the Adapter strength. If it remains too high, then decrease the IdentityNet strength.
|
411 |
+
3. If you find that text control is not as expected, decrease Adapter strength.
|
412 |
+
4. If you find that realistic style is not good enough, go for our Github repo and use a more realistic base model.
|
413 |
"""
|
414 |
|
415 |
css = """
|
|
|
422 |
|
423 |
with gr.Row():
|
424 |
with gr.Column():
|
425 |
+
with gr.Row(equal_height=True):
|
426 |
+
# upload face image
|
427 |
+
face_file = gr.Image(
|
428 |
+
label="Upload a photo of your face", type="filepath"
|
429 |
+
)
|
430 |
+
# optional: upload a reference pose image
|
431 |
+
pose_file = gr.Image(
|
432 |
+
label="Upload a reference pose image (Optional)",
|
433 |
+
type="filepath",
|
434 |
+
)
|
435 |
|
436 |
# prompt
|
437 |
prompt = gr.Textbox(
|
438 |
label="Prompt",
|
439 |
+
info="Give simple prompt is enough to achieve good face fidelity",
|
440 |
placeholder="A photo of a person",
|
441 |
value="",
|
442 |
)
|
443 |
|
444 |
submit = gr.Button("Submit", variant="primary")
|
445 |
+
enable_LCM = gr.Checkbox(
|
446 |
+
label="Enable Fast Inference with LCM", value=enable_lcm_arg,
|
447 |
+
info="LCM speeds up the inference step, the trade-off is the quality of the generated image. It performs better with portrait face images rather than distant faces",
|
448 |
+
)
|
449 |
+
style = gr.Dropdown(
|
450 |
+
label="Style template",
|
451 |
+
choices=STYLE_NAMES,
|
452 |
+
value=DEFAULT_STYLE_NAME,
|
453 |
+
)
|
454 |
|
455 |
# strength
|
456 |
identitynet_strength_ratio = gr.Slider(
|
457 |
+
label="IdentityNet strength (for fidelity)",
|
458 |
minimum=0,
|
459 |
maximum=1.5,
|
460 |
step=0.05,
|
|
|
467 |
step=0.05,
|
468 |
value=0.80,
|
469 |
)
|
470 |
+
with gr.Accordion("Controlnet"):
|
471 |
+
controlnet_selection = gr.CheckboxGroup(
|
472 |
+
["pose", "canny", "depth"], label="Controlnet", value=["pose"],
|
473 |
+
info="Use pose for skeleton inference, canny for edge detection, and depth for depth map estimation. You can try all three to control the generation process"
|
474 |
+
)
|
475 |
+
pose_strength = gr.Slider(
|
476 |
+
label="Pose strength",
|
477 |
+
minimum=0,
|
478 |
+
maximum=1.5,
|
479 |
+
step=0.05,
|
480 |
+
value=0.40,
|
481 |
+
)
|
482 |
+
canny_strength = gr.Slider(
|
483 |
+
label="Canny strength",
|
484 |
+
minimum=0,
|
485 |
+
maximum=1.5,
|
486 |
+
step=0.05,
|
487 |
+
value=0.40,
|
488 |
+
)
|
489 |
+
depth_strength = gr.Slider(
|
490 |
+
label="Depth strength",
|
491 |
+
minimum=0,
|
492 |
+
maximum=1.5,
|
493 |
+
step=0.05,
|
494 |
+
value=0.40,
|
495 |
+
)
|
496 |
with gr.Accordion(open=False, label="Advanced Options"):
|
497 |
negative_prompt = gr.Textbox(
|
498 |
label="Negative Prompt",
|
499 |
placeholder="low quality",
|
500 |
+
value="(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
501 |
)
|
502 |
num_steps = gr.Slider(
|
503 |
label="Number of sample steps",
|
504 |
+
minimum=1,
|
505 |
maximum=100,
|
506 |
step=1,
|
507 |
+
value=5 if enable_lcm_arg else 30,
|
508 |
)
|
509 |
guidance_scale = gr.Slider(
|
510 |
label="Guidance scale",
|
511 |
minimum=0.1,
|
512 |
+
maximum=20.0,
|
513 |
step=0.1,
|
514 |
+
value=0.0 if enable_lcm_arg else 5.0,
|
515 |
)
|
516 |
seed = gr.Slider(
|
517 |
label="Seed",
|
|
|
520 |
step=1,
|
521 |
value=42,
|
522 |
)
|
523 |
+
schedulers = [
|
524 |
+
"DEISMultistepScheduler",
|
525 |
+
"HeunDiscreteScheduler",
|
526 |
+
"EulerDiscreteScheduler",
|
527 |
+
"DPMSolverMultistepScheduler",
|
528 |
+
"DPMSolverMultistepScheduler-Karras",
|
529 |
+
"DPMSolverMultistepScheduler-Karras-SDE",
|
530 |
+
]
|
531 |
+
scheduler = gr.Dropdown(
|
532 |
+
label="Schedulers",
|
533 |
+
choices=schedulers,
|
534 |
+
value="EulerDiscreteScheduler",
|
535 |
+
)
|
536 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
537 |
enhance_face_region = gr.Checkbox(label="Enhance non-face region", value=True)
|
538 |
|
539 |
+
with gr.Column(scale=1):
|
540 |
+
gallery = gr.Image(label="Generated Images")
|
541 |
+
usage_tips = gr.Markdown(
|
542 |
+
label="InstantID Usage Tips", value=tips, visible=False
|
543 |
+
)
|
544 |
|
545 |
submit.click(
|
546 |
fn=remove_tips,
|
547 |
outputs=usage_tips,
|
|
|
|
|
548 |
).then(
|
549 |
fn=randomize_seed_fn,
|
550 |
inputs=[seed, randomize_seed],
|
|
|
552 |
queue=False,
|
553 |
api_name=False,
|
554 |
).then(
|
|
|
|
|
|
|
|
|
|
|
555 |
fn=generate_image,
|
556 |
inputs=[
|
557 |
face_file,
|
|
|
559 |
prompt,
|
560 |
negative_prompt,
|
561 |
style,
|
|
|
562 |
num_steps,
|
563 |
identitynet_strength_ratio,
|
564 |
adapter_strength_ratio,
|
565 |
+
pose_strength,
|
566 |
+
canny_strength,
|
567 |
+
depth_strength,
|
568 |
+
controlnet_selection,
|
569 |
guidance_scale,
|
570 |
seed,
|
571 |
+
scheduler,
|
572 |
+
enable_LCM,
|
573 |
+
enhance_face_region,
|
574 |
],
|
575 |
+
outputs=[gallery, usage_tips],
|
576 |
+
)
|
577 |
+
|
578 |
+
enable_LCM.input(
|
579 |
+
fn=toggle_lcm_ui,
|
580 |
+
inputs=[enable_LCM],
|
581 |
+
outputs=[num_steps, guidance_scale],
|
582 |
+
queue=False,
|
583 |
)
|
584 |
|
585 |
gr.Examples(
|
586 |
examples=get_example(),
|
587 |
+
inputs=[face_file, pose_file, prompt, style, negative_prompt],
|
|
|
588 |
fn=run_for_examples,
|
589 |
+
outputs=[gallery, usage_tips],
|
590 |
cache_examples=True,
|
591 |
)
|
592 |
|
controlnet_util.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
from controlnet_aux import OpenposeDetector
|
5 |
+
from model_util import get_torch_device
|
6 |
+
import cv2
|
7 |
+
|
8 |
+
|
9 |
+
from transformers import DPTImageProcessor, DPTForDepthEstimation
|
10 |
+
|
11 |
+
device = get_torch_device()
|
12 |
+
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to(device)
|
13 |
+
feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas")
|
14 |
+
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
|
15 |
+
|
16 |
+
def get_depth_map(image):
|
17 |
+
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
|
18 |
+
with torch.no_grad(), torch.autocast("cuda"):
|
19 |
+
depth_map = depth_estimator(image).predicted_depth
|
20 |
+
|
21 |
+
depth_map = torch.nn.functional.interpolate(
|
22 |
+
depth_map.unsqueeze(1),
|
23 |
+
size=(1024, 1024),
|
24 |
+
mode="bicubic",
|
25 |
+
align_corners=False,
|
26 |
+
)
|
27 |
+
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
|
28 |
+
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
|
29 |
+
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
|
30 |
+
image = torch.cat([depth_map] * 3, dim=1)
|
31 |
+
|
32 |
+
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
|
33 |
+
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
|
34 |
+
return image
|
35 |
+
|
36 |
+
def get_canny_image(image, t1=100, t2=200):
|
37 |
+
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
38 |
+
edges = cv2.Canny(image, t1, t2)
|
39 |
+
return Image.fromarray(edges, "L")
|
gradio_cached_examples/25/Generated Image/2880a3d19ef9b42e3ed2/image.png
DELETED
Git LFS Details
|
gradio_cached_examples/25/Generated Image/38dde1388c41109c5d39/image.png
DELETED
Git LFS Details
|
gradio_cached_examples/25/Generated Image/6cb5a3af223906666bfd/image.png
DELETED
Git LFS Details
|
gradio_cached_examples/25/Generated Image/7e6ea85f77dd925d842c/image.png
DELETED
Git LFS Details
|
gradio_cached_examples/25/Generated Image/e56b029833685ff77e6a/image.png
DELETED
Git LFS Details
|
gradio_cached_examples/25/log.csv
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
Generated Image,Usage tips of InstantID,flag,username,timestamp
|
2 |
-
"{""path"":""gradio_cached_examples/25/Generated Image/7e6ea85f77dd925d842c/image.png"",""url"":null,""size"":null,""orig_name"":""image.png"",""mime_type"":null}","{'visible': True, '__type__': 'update'}",,,2024-01-24 08:55:38.846769
|
3 |
-
"{""path"":""gradio_cached_examples/25/Generated Image/2880a3d19ef9b42e3ed2/image.png"",""url"":null,""size"":null,""orig_name"":""image.png"",""mime_type"":null}","{'visible': True, '__type__': 'update'}",,,2024-01-24 08:56:11.432078
|
4 |
-
"{""path"":""gradio_cached_examples/25/Generated Image/38dde1388c41109c5d39/image.png"",""url"":null,""size"":null,""orig_name"":""image.png"",""mime_type"":null}","{'visible': True, '__type__': 'update'}",,,2024-01-24 08:56:45.563918
|
5 |
-
"{""path"":""gradio_cached_examples/25/Generated Image/e56b029833685ff77e6a/image.png"",""url"":null,""size"":null,""orig_name"":""image.png"",""mime_type"":null}","{'visible': True, '__type__': 'update'}",,,2024-01-24 08:57:20.321876
|
6 |
-
"{""path"":""gradio_cached_examples/25/Generated Image/6cb5a3af223906666bfd/image.png"",""url"":null,""size"":null,""orig_name"":""image.png"",""mime_type"":null}","{'visible': True, '__type__': 'update'}",,,2024-01-24 08:57:53.871716
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ip_adapter/attention_processor.py
CHANGED
@@ -10,14 +10,11 @@ try:
|
|
10 |
except Exception as e:
|
11 |
xformers_available = False
|
12 |
|
13 |
-
|
14 |
-
|
15 |
class RegionControler(object):
|
16 |
def __init__(self) -> None:
|
17 |
self.prompt_image_conditioning = []
|
18 |
region_control = RegionControler()
|
19 |
|
20 |
-
|
21 |
class AttnProcessor(nn.Module):
|
22 |
r"""
|
23 |
Default processor for performing attention-related computations.
|
@@ -29,7 +26,7 @@ class AttnProcessor(nn.Module):
|
|
29 |
):
|
30 |
super().__init__()
|
31 |
|
32 |
-
def
|
33 |
self,
|
34 |
attn,
|
35 |
hidden_states,
|
@@ -115,7 +112,7 @@ class IPAttnProcessor(nn.Module):
|
|
115 |
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
116 |
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
117 |
|
118 |
-
def
|
119 |
self,
|
120 |
attn,
|
121 |
hidden_states,
|
@@ -180,7 +177,7 @@ class IPAttnProcessor(nn.Module):
|
|
180 |
ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
|
181 |
ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
|
182 |
ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
|
183 |
-
|
184 |
# region control
|
185 |
if len(region_control.prompt_image_conditioning) == 1:
|
186 |
region_mask = region_control.prompt_image_conditioning[0].get('region_mask', None)
|
@@ -190,7 +187,7 @@ class IPAttnProcessor(nn.Module):
|
|
190 |
mask = F.interpolate(region_mask[None, None], scale_factor=1/ratio, mode='nearest').reshape([1, -1, 1])
|
191 |
else:
|
192 |
mask = torch.ones_like(ip_hidden_states)
|
193 |
-
ip_hidden_states = ip_hidden_states * mask
|
194 |
|
195 |
hidden_states = hidden_states + self.scale * ip_hidden_states
|
196 |
|
@@ -233,7 +230,7 @@ class AttnProcessor2_0(torch.nn.Module):
|
|
233 |
if not hasattr(F, "scaled_dot_product_attention"):
|
234 |
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
235 |
|
236 |
-
def
|
237 |
self,
|
238 |
attn,
|
239 |
hidden_states,
|
@@ -305,4 +302,145 @@ class AttnProcessor2_0(torch.nn.Module):
|
|
305 |
|
306 |
hidden_states = hidden_states / attn.rescale_output_factor
|
307 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
return hidden_states
|
|
|
10 |
except Exception as e:
|
11 |
xformers_available = False
|
12 |
|
|
|
|
|
13 |
class RegionControler(object):
|
14 |
def __init__(self) -> None:
|
15 |
self.prompt_image_conditioning = []
|
16 |
region_control = RegionControler()
|
17 |
|
|
|
18 |
class AttnProcessor(nn.Module):
|
19 |
r"""
|
20 |
Default processor for performing attention-related computations.
|
|
|
26 |
):
|
27 |
super().__init__()
|
28 |
|
29 |
+
def forward(
|
30 |
self,
|
31 |
attn,
|
32 |
hidden_states,
|
|
|
112 |
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
113 |
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
114 |
|
115 |
+
def forward(
|
116 |
self,
|
117 |
attn,
|
118 |
hidden_states,
|
|
|
177 |
ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
|
178 |
ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
|
179 |
ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
|
180 |
+
|
181 |
# region control
|
182 |
if len(region_control.prompt_image_conditioning) == 1:
|
183 |
region_mask = region_control.prompt_image_conditioning[0].get('region_mask', None)
|
|
|
187 |
mask = F.interpolate(region_mask[None, None], scale_factor=1/ratio, mode='nearest').reshape([1, -1, 1])
|
188 |
else:
|
189 |
mask = torch.ones_like(ip_hidden_states)
|
190 |
+
ip_hidden_states = ip_hidden_states * mask
|
191 |
|
192 |
hidden_states = hidden_states + self.scale * ip_hidden_states
|
193 |
|
|
|
230 |
if not hasattr(F, "scaled_dot_product_attention"):
|
231 |
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
232 |
|
233 |
+
def forward(
|
234 |
self,
|
235 |
attn,
|
236 |
hidden_states,
|
|
|
302 |
|
303 |
hidden_states = hidden_states / attn.rescale_output_factor
|
304 |
|
305 |
+
return hidden_states
|
306 |
+
|
307 |
+
class IPAttnProcessor2_0(torch.nn.Module):
|
308 |
+
r"""
|
309 |
+
Attention processor for IP-Adapater for PyTorch 2.0.
|
310 |
+
Args:
|
311 |
+
hidden_size (`int`):
|
312 |
+
The hidden size of the attention layer.
|
313 |
+
cross_attention_dim (`int`):
|
314 |
+
The number of channels in the `encoder_hidden_states`.
|
315 |
+
scale (`float`, defaults to 1.0):
|
316 |
+
the weight scale of image prompt.
|
317 |
+
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
318 |
+
The context length of the image features.
|
319 |
+
"""
|
320 |
+
|
321 |
+
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
|
322 |
+
super().__init__()
|
323 |
+
|
324 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
325 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
326 |
+
|
327 |
+
self.hidden_size = hidden_size
|
328 |
+
self.cross_attention_dim = cross_attention_dim
|
329 |
+
self.scale = scale
|
330 |
+
self.num_tokens = num_tokens
|
331 |
+
|
332 |
+
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
333 |
+
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
334 |
+
|
335 |
+
def forward(
|
336 |
+
self,
|
337 |
+
attn,
|
338 |
+
hidden_states,
|
339 |
+
encoder_hidden_states=None,
|
340 |
+
attention_mask=None,
|
341 |
+
temb=None,
|
342 |
+
):
|
343 |
+
residual = hidden_states
|
344 |
+
|
345 |
+
if attn.spatial_norm is not None:
|
346 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
347 |
+
|
348 |
+
input_ndim = hidden_states.ndim
|
349 |
+
|
350 |
+
if input_ndim == 4:
|
351 |
+
batch_size, channel, height, width = hidden_states.shape
|
352 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
353 |
+
|
354 |
+
batch_size, sequence_length, _ = (
|
355 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
356 |
+
)
|
357 |
+
|
358 |
+
if attention_mask is not None:
|
359 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
360 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
361 |
+
# (batch, heads, source_length, target_length)
|
362 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
363 |
+
|
364 |
+
if attn.group_norm is not None:
|
365 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
366 |
+
|
367 |
+
query = attn.to_q(hidden_states)
|
368 |
+
|
369 |
+
if encoder_hidden_states is None:
|
370 |
+
encoder_hidden_states = hidden_states
|
371 |
+
else:
|
372 |
+
# get encoder_hidden_states, ip_hidden_states
|
373 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
374 |
+
encoder_hidden_states, ip_hidden_states = (
|
375 |
+
encoder_hidden_states[:, :end_pos, :],
|
376 |
+
encoder_hidden_states[:, end_pos:, :],
|
377 |
+
)
|
378 |
+
if attn.norm_cross:
|
379 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
380 |
+
|
381 |
+
key = attn.to_k(encoder_hidden_states)
|
382 |
+
value = attn.to_v(encoder_hidden_states)
|
383 |
+
|
384 |
+
inner_dim = key.shape[-1]
|
385 |
+
head_dim = inner_dim // attn.heads
|
386 |
+
|
387 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
388 |
+
|
389 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
390 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
391 |
+
|
392 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
393 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
394 |
+
hidden_states = F.scaled_dot_product_attention(
|
395 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
396 |
+
)
|
397 |
+
|
398 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
399 |
+
hidden_states = hidden_states.to(query.dtype)
|
400 |
+
|
401 |
+
# for ip-adapter
|
402 |
+
ip_key = self.to_k_ip(ip_hidden_states)
|
403 |
+
ip_value = self.to_v_ip(ip_hidden_states)
|
404 |
+
|
405 |
+
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
406 |
+
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
407 |
+
|
408 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
409 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
410 |
+
ip_hidden_states = F.scaled_dot_product_attention(
|
411 |
+
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
|
412 |
+
)
|
413 |
+
with torch.no_grad():
|
414 |
+
self.attn_map = query @ ip_key.transpose(-2, -1).softmax(dim=-1)
|
415 |
+
#print(self.attn_map.shape)
|
416 |
+
|
417 |
+
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
418 |
+
ip_hidden_states = ip_hidden_states.to(query.dtype)
|
419 |
+
|
420 |
+
# region control
|
421 |
+
if len(region_control.prompt_image_conditioning) == 1:
|
422 |
+
region_mask = region_control.prompt_image_conditioning[0].get('region_mask', None)
|
423 |
+
if region_mask is not None:
|
424 |
+
h, w = region_mask.shape[:2]
|
425 |
+
ratio = (h * w / query.shape[1]) ** 0.5
|
426 |
+
mask = F.interpolate(region_mask[None, None], scale_factor=1/ratio, mode='nearest').reshape([1, -1, 1])
|
427 |
+
else:
|
428 |
+
mask = torch.ones_like(ip_hidden_states)
|
429 |
+
ip_hidden_states = ip_hidden_states * mask
|
430 |
+
|
431 |
+
hidden_states = hidden_states + self.scale * ip_hidden_states
|
432 |
+
|
433 |
+
# linear proj
|
434 |
+
hidden_states = attn.to_out[0](hidden_states)
|
435 |
+
# dropout
|
436 |
+
hidden_states = attn.to_out[1](hidden_states)
|
437 |
+
|
438 |
+
if input_ndim == 4:
|
439 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
440 |
+
|
441 |
+
if attn.residual_connection:
|
442 |
+
hidden_states = hidden_states + residual
|
443 |
+
|
444 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
445 |
+
|
446 |
return hidden_states
|
model_util.py
ADDED
@@ -0,0 +1,472 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Literal, Union, Optional, Tuple, List
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from transformers import CLIPTextModel, CLIPTokenizer, CLIPTextModelWithProjection
|
5 |
+
from diffusers import (
|
6 |
+
UNet2DConditionModel,
|
7 |
+
SchedulerMixin,
|
8 |
+
StableDiffusionPipeline,
|
9 |
+
StableDiffusionXLPipeline,
|
10 |
+
AutoencoderKL,
|
11 |
+
)
|
12 |
+
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
|
13 |
+
convert_ldm_unet_checkpoint,
|
14 |
+
)
|
15 |
+
from safetensors.torch import load_file
|
16 |
+
from diffusers.schedulers import (
|
17 |
+
DDIMScheduler,
|
18 |
+
DDPMScheduler,
|
19 |
+
LMSDiscreteScheduler,
|
20 |
+
EulerDiscreteScheduler,
|
21 |
+
EulerAncestralDiscreteScheduler,
|
22 |
+
UniPCMultistepScheduler,
|
23 |
+
)
|
24 |
+
|
25 |
+
from omegaconf import OmegaConf
|
26 |
+
|
27 |
+
# DiffUsers版StableDiffusionのモデルパラメータ
|
28 |
+
NUM_TRAIN_TIMESTEPS = 1000
|
29 |
+
BETA_START = 0.00085
|
30 |
+
BETA_END = 0.0120
|
31 |
+
|
32 |
+
UNET_PARAMS_MODEL_CHANNELS = 320
|
33 |
+
UNET_PARAMS_CHANNEL_MULT = [1, 2, 4, 4]
|
34 |
+
UNET_PARAMS_ATTENTION_RESOLUTIONS = [4, 2, 1]
|
35 |
+
UNET_PARAMS_IMAGE_SIZE = 64 # fixed from old invalid value `32`
|
36 |
+
UNET_PARAMS_IN_CHANNELS = 4
|
37 |
+
UNET_PARAMS_OUT_CHANNELS = 4
|
38 |
+
UNET_PARAMS_NUM_RES_BLOCKS = 2
|
39 |
+
UNET_PARAMS_CONTEXT_DIM = 768
|
40 |
+
UNET_PARAMS_NUM_HEADS = 8
|
41 |
+
# UNET_PARAMS_USE_LINEAR_PROJECTION = False
|
42 |
+
|
43 |
+
VAE_PARAMS_Z_CHANNELS = 4
|
44 |
+
VAE_PARAMS_RESOLUTION = 256
|
45 |
+
VAE_PARAMS_IN_CHANNELS = 3
|
46 |
+
VAE_PARAMS_OUT_CH = 3
|
47 |
+
VAE_PARAMS_CH = 128
|
48 |
+
VAE_PARAMS_CH_MULT = [1, 2, 4, 4]
|
49 |
+
VAE_PARAMS_NUM_RES_BLOCKS = 2
|
50 |
+
|
51 |
+
# V2
|
52 |
+
V2_UNET_PARAMS_ATTENTION_HEAD_DIM = [5, 10, 20, 20]
|
53 |
+
V2_UNET_PARAMS_CONTEXT_DIM = 1024
|
54 |
+
# V2_UNET_PARAMS_USE_LINEAR_PROJECTION = True
|
55 |
+
|
56 |
+
TOKENIZER_V1_MODEL_NAME = "CompVis/stable-diffusion-v1-4"
|
57 |
+
TOKENIZER_V2_MODEL_NAME = "stabilityai/stable-diffusion-2-1"
|
58 |
+
|
59 |
+
AVAILABLE_SCHEDULERS = Literal["ddim", "ddpm", "lms", "euler_a", "euler", "uniPC"]
|
60 |
+
|
61 |
+
SDXL_TEXT_ENCODER_TYPE = Union[CLIPTextModel, CLIPTextModelWithProjection]
|
62 |
+
|
63 |
+
DIFFUSERS_CACHE_DIR = None # if you want to change the cache dir, change this
|
64 |
+
|
65 |
+
|
66 |
+
def load_checkpoint_with_text_encoder_conversion(ckpt_path: str, device="cpu"):
|
67 |
+
# text encoderの格納形式が違うモデルに対応する ('text_model'がない)
|
68 |
+
TEXT_ENCODER_KEY_REPLACEMENTS = [
|
69 |
+
(
|
70 |
+
"cond_stage_model.transformer.embeddings.",
|
71 |
+
"cond_stage_model.transformer.text_model.embeddings.",
|
72 |
+
),
|
73 |
+
(
|
74 |
+
"cond_stage_model.transformer.encoder.",
|
75 |
+
"cond_stage_model.transformer.text_model.encoder.",
|
76 |
+
),
|
77 |
+
(
|
78 |
+
"cond_stage_model.transformer.final_layer_norm.",
|
79 |
+
"cond_stage_model.transformer.text_model.final_layer_norm.",
|
80 |
+
),
|
81 |
+
]
|
82 |
+
|
83 |
+
if ckpt_path.endswith(".safetensors"):
|
84 |
+
checkpoint = None
|
85 |
+
state_dict = load_file(ckpt_path) # , device) # may causes error
|
86 |
+
else:
|
87 |
+
checkpoint = torch.load(ckpt_path, map_location=device)
|
88 |
+
if "state_dict" in checkpoint:
|
89 |
+
state_dict = checkpoint["state_dict"]
|
90 |
+
else:
|
91 |
+
state_dict = checkpoint
|
92 |
+
checkpoint = None
|
93 |
+
|
94 |
+
key_reps = []
|
95 |
+
for rep_from, rep_to in TEXT_ENCODER_KEY_REPLACEMENTS:
|
96 |
+
for key in state_dict.keys():
|
97 |
+
if key.startswith(rep_from):
|
98 |
+
new_key = rep_to + key[len(rep_from) :]
|
99 |
+
key_reps.append((key, new_key))
|
100 |
+
|
101 |
+
for key, new_key in key_reps:
|
102 |
+
state_dict[new_key] = state_dict[key]
|
103 |
+
del state_dict[key]
|
104 |
+
|
105 |
+
return checkpoint, state_dict
|
106 |
+
|
107 |
+
|
108 |
+
def create_unet_diffusers_config(v2, use_linear_projection_in_v2=False):
|
109 |
+
"""
|
110 |
+
Creates a config for the diffusers based on the config of the LDM model.
|
111 |
+
"""
|
112 |
+
# unet_params = original_config.model.params.unet_config.params
|
113 |
+
|
114 |
+
block_out_channels = [
|
115 |
+
UNET_PARAMS_MODEL_CHANNELS * mult for mult in UNET_PARAMS_CHANNEL_MULT
|
116 |
+
]
|
117 |
+
|
118 |
+
down_block_types = []
|
119 |
+
resolution = 1
|
120 |
+
for i in range(len(block_out_channels)):
|
121 |
+
block_type = (
|
122 |
+
"CrossAttnDownBlock2D"
|
123 |
+
if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS
|
124 |
+
else "DownBlock2D"
|
125 |
+
)
|
126 |
+
down_block_types.append(block_type)
|
127 |
+
if i != len(block_out_channels) - 1:
|
128 |
+
resolution *= 2
|
129 |
+
|
130 |
+
up_block_types = []
|
131 |
+
for i in range(len(block_out_channels)):
|
132 |
+
block_type = (
|
133 |
+
"CrossAttnUpBlock2D"
|
134 |
+
if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS
|
135 |
+
else "UpBlock2D"
|
136 |
+
)
|
137 |
+
up_block_types.append(block_type)
|
138 |
+
resolution //= 2
|
139 |
+
|
140 |
+
config = dict(
|
141 |
+
sample_size=UNET_PARAMS_IMAGE_SIZE,
|
142 |
+
in_channels=UNET_PARAMS_IN_CHANNELS,
|
143 |
+
out_channels=UNET_PARAMS_OUT_CHANNELS,
|
144 |
+
down_block_types=tuple(down_block_types),
|
145 |
+
up_block_types=tuple(up_block_types),
|
146 |
+
block_out_channels=tuple(block_out_channels),
|
147 |
+
layers_per_block=UNET_PARAMS_NUM_RES_BLOCKS,
|
148 |
+
cross_attention_dim=UNET_PARAMS_CONTEXT_DIM
|
149 |
+
if not v2
|
150 |
+
else V2_UNET_PARAMS_CONTEXT_DIM,
|
151 |
+
attention_head_dim=UNET_PARAMS_NUM_HEADS
|
152 |
+
if not v2
|
153 |
+
else V2_UNET_PARAMS_ATTENTION_HEAD_DIM,
|
154 |
+
# use_linear_projection=UNET_PARAMS_USE_LINEAR_PROJECTION if not v2 else V2_UNET_PARAMS_USE_LINEAR_PROJECTION,
|
155 |
+
)
|
156 |
+
if v2 and use_linear_projection_in_v2:
|
157 |
+
config["use_linear_projection"] = True
|
158 |
+
|
159 |
+
return config
|
160 |
+
|
161 |
+
|
162 |
+
def load_diffusers_model(
|
163 |
+
pretrained_model_name_or_path: str,
|
164 |
+
v2: bool = False,
|
165 |
+
clip_skip: Optional[int] = None,
|
166 |
+
weight_dtype: torch.dtype = torch.float32,
|
167 |
+
) -> Tuple[CLIPTokenizer, CLIPTextModel, UNet2DConditionModel,]:
|
168 |
+
if v2:
|
169 |
+
tokenizer = CLIPTokenizer.from_pretrained(
|
170 |
+
TOKENIZER_V2_MODEL_NAME,
|
171 |
+
subfolder="tokenizer",
|
172 |
+
torch_dtype=weight_dtype,
|
173 |
+
cache_dir=DIFFUSERS_CACHE_DIR,
|
174 |
+
)
|
175 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
176 |
+
pretrained_model_name_or_path,
|
177 |
+
subfolder="text_encoder",
|
178 |
+
# default is clip skip 2
|
179 |
+
num_hidden_layers=24 - (clip_skip - 1) if clip_skip is not None else 23,
|
180 |
+
torch_dtype=weight_dtype,
|
181 |
+
cache_dir=DIFFUSERS_CACHE_DIR,
|
182 |
+
)
|
183 |
+
else:
|
184 |
+
tokenizer = CLIPTokenizer.from_pretrained(
|
185 |
+
TOKENIZER_V1_MODEL_NAME,
|
186 |
+
subfolder="tokenizer",
|
187 |
+
torch_dtype=weight_dtype,
|
188 |
+
cache_dir=DIFFUSERS_CACHE_DIR,
|
189 |
+
)
|
190 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
191 |
+
pretrained_model_name_or_path,
|
192 |
+
subfolder="text_encoder",
|
193 |
+
num_hidden_layers=12 - (clip_skip - 1) if clip_skip is not None else 12,
|
194 |
+
torch_dtype=weight_dtype,
|
195 |
+
cache_dir=DIFFUSERS_CACHE_DIR,
|
196 |
+
)
|
197 |
+
|
198 |
+
unet = UNet2DConditionModel.from_pretrained(
|
199 |
+
pretrained_model_name_or_path,
|
200 |
+
subfolder="unet",
|
201 |
+
torch_dtype=weight_dtype,
|
202 |
+
cache_dir=DIFFUSERS_CACHE_DIR,
|
203 |
+
)
|
204 |
+
|
205 |
+
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae")
|
206 |
+
|
207 |
+
return tokenizer, text_encoder, unet, vae
|
208 |
+
|
209 |
+
|
210 |
+
def load_checkpoint_model(
|
211 |
+
checkpoint_path: str,
|
212 |
+
v2: bool = False,
|
213 |
+
clip_skip: Optional[int] = None,
|
214 |
+
weight_dtype: torch.dtype = torch.float32,
|
215 |
+
) -> Tuple[CLIPTokenizer, CLIPTextModel, UNet2DConditionModel,]:
|
216 |
+
pipe = StableDiffusionPipeline.from_single_file(
|
217 |
+
checkpoint_path,
|
218 |
+
upcast_attention=True if v2 else False,
|
219 |
+
torch_dtype=weight_dtype,
|
220 |
+
cache_dir=DIFFUSERS_CACHE_DIR,
|
221 |
+
)
|
222 |
+
|
223 |
+
_, state_dict = load_checkpoint_with_text_encoder_conversion(checkpoint_path)
|
224 |
+
unet_config = create_unet_diffusers_config(v2, use_linear_projection_in_v2=v2)
|
225 |
+
unet_config["class_embed_type"] = None
|
226 |
+
unet_config["addition_embed_type"] = None
|
227 |
+
converted_unet_checkpoint = convert_ldm_unet_checkpoint(state_dict, unet_config)
|
228 |
+
unet = UNet2DConditionModel(**unet_config)
|
229 |
+
unet.load_state_dict(converted_unet_checkpoint)
|
230 |
+
|
231 |
+
tokenizer = pipe.tokenizer
|
232 |
+
text_encoder = pipe.text_encoder
|
233 |
+
vae = pipe.vae
|
234 |
+
if clip_skip is not None:
|
235 |
+
if v2:
|
236 |
+
text_encoder.config.num_hidden_layers = 24 - (clip_skip - 1)
|
237 |
+
else:
|
238 |
+
text_encoder.config.num_hidden_layers = 12 - (clip_skip - 1)
|
239 |
+
|
240 |
+
del pipe
|
241 |
+
|
242 |
+
return tokenizer, text_encoder, unet, vae
|
243 |
+
|
244 |
+
|
245 |
+
def load_models(
|
246 |
+
pretrained_model_name_or_path: str,
|
247 |
+
scheduler_name: str,
|
248 |
+
v2: bool = False,
|
249 |
+
v_pred: bool = False,
|
250 |
+
weight_dtype: torch.dtype = torch.float32,
|
251 |
+
) -> Tuple[CLIPTokenizer, CLIPTextModel, UNet2DConditionModel, SchedulerMixin,]:
|
252 |
+
if pretrained_model_name_or_path.endswith(
|
253 |
+
".ckpt"
|
254 |
+
) or pretrained_model_name_or_path.endswith(".safetensors"):
|
255 |
+
tokenizer, text_encoder, unet, vae = load_checkpoint_model(
|
256 |
+
pretrained_model_name_or_path, v2=v2, weight_dtype=weight_dtype
|
257 |
+
)
|
258 |
+
else: # diffusers
|
259 |
+
tokenizer, text_encoder, unet, vae = load_diffusers_model(
|
260 |
+
pretrained_model_name_or_path, v2=v2, weight_dtype=weight_dtype
|
261 |
+
)
|
262 |
+
|
263 |
+
if scheduler_name:
|
264 |
+
scheduler = create_noise_scheduler(
|
265 |
+
scheduler_name,
|
266 |
+
prediction_type="v_prediction" if v_pred else "epsilon",
|
267 |
+
)
|
268 |
+
else:
|
269 |
+
scheduler = None
|
270 |
+
|
271 |
+
return tokenizer, text_encoder, unet, scheduler, vae
|
272 |
+
|
273 |
+
|
274 |
+
def load_diffusers_model_xl(
|
275 |
+
pretrained_model_name_or_path: str,
|
276 |
+
weight_dtype: torch.dtype = torch.float32,
|
277 |
+
) -> Tuple[List[CLIPTokenizer], List[SDXL_TEXT_ENCODER_TYPE], UNet2DConditionModel,]:
|
278 |
+
# returns tokenizer, tokenizer_2, text_encoder, text_encoder_2, unet
|
279 |
+
|
280 |
+
tokenizers = [
|
281 |
+
CLIPTokenizer.from_pretrained(
|
282 |
+
pretrained_model_name_or_path,
|
283 |
+
subfolder="tokenizer",
|
284 |
+
torch_dtype=weight_dtype,
|
285 |
+
cache_dir=DIFFUSERS_CACHE_DIR,
|
286 |
+
),
|
287 |
+
CLIPTokenizer.from_pretrained(
|
288 |
+
pretrained_model_name_or_path,
|
289 |
+
subfolder="tokenizer_2",
|
290 |
+
torch_dtype=weight_dtype,
|
291 |
+
cache_dir=DIFFUSERS_CACHE_DIR,
|
292 |
+
pad_token_id=0, # same as open clip
|
293 |
+
),
|
294 |
+
]
|
295 |
+
|
296 |
+
text_encoders = [
|
297 |
+
CLIPTextModel.from_pretrained(
|
298 |
+
pretrained_model_name_or_path,
|
299 |
+
subfolder="text_encoder",
|
300 |
+
torch_dtype=weight_dtype,
|
301 |
+
cache_dir=DIFFUSERS_CACHE_DIR,
|
302 |
+
),
|
303 |
+
CLIPTextModelWithProjection.from_pretrained(
|
304 |
+
pretrained_model_name_or_path,
|
305 |
+
subfolder="text_encoder_2",
|
306 |
+
torch_dtype=weight_dtype,
|
307 |
+
cache_dir=DIFFUSERS_CACHE_DIR,
|
308 |
+
),
|
309 |
+
]
|
310 |
+
|
311 |
+
unet = UNet2DConditionModel.from_pretrained(
|
312 |
+
pretrained_model_name_or_path,
|
313 |
+
subfolder="unet",
|
314 |
+
torch_dtype=weight_dtype,
|
315 |
+
cache_dir=DIFFUSERS_CACHE_DIR,
|
316 |
+
)
|
317 |
+
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae")
|
318 |
+
return tokenizers, text_encoders, unet, vae
|
319 |
+
|
320 |
+
|
321 |
+
def load_checkpoint_model_xl(
|
322 |
+
checkpoint_path: str,
|
323 |
+
weight_dtype: torch.dtype = torch.float32,
|
324 |
+
) -> Tuple[List[CLIPTokenizer], List[SDXL_TEXT_ENCODER_TYPE], UNet2DConditionModel,]:
|
325 |
+
pipe = StableDiffusionXLPipeline.from_single_file(
|
326 |
+
checkpoint_path,
|
327 |
+
torch_dtype=weight_dtype,
|
328 |
+
cache_dir=DIFFUSERS_CACHE_DIR,
|
329 |
+
)
|
330 |
+
|
331 |
+
unet = pipe.unet
|
332 |
+
vae = pipe.vae
|
333 |
+
tokenizers = [pipe.tokenizer, pipe.tokenizer_2]
|
334 |
+
text_encoders = [pipe.text_encoder, pipe.text_encoder_2]
|
335 |
+
if len(text_encoders) == 2:
|
336 |
+
text_encoders[1].pad_token_id = 0
|
337 |
+
|
338 |
+
del pipe
|
339 |
+
|
340 |
+
return tokenizers, text_encoders, unet, vae
|
341 |
+
|
342 |
+
|
343 |
+
def load_models_xl(
|
344 |
+
pretrained_model_name_or_path: str,
|
345 |
+
scheduler_name: str,
|
346 |
+
weight_dtype: torch.dtype = torch.float32,
|
347 |
+
noise_scheduler_kwargs=None,
|
348 |
+
) -> Tuple[
|
349 |
+
List[CLIPTokenizer],
|
350 |
+
List[SDXL_TEXT_ENCODER_TYPE],
|
351 |
+
UNet2DConditionModel,
|
352 |
+
SchedulerMixin,
|
353 |
+
]:
|
354 |
+
if pretrained_model_name_or_path.endswith(
|
355 |
+
".ckpt"
|
356 |
+
) or pretrained_model_name_or_path.endswith(".safetensors"):
|
357 |
+
(tokenizers, text_encoders, unet, vae) = load_checkpoint_model_xl(
|
358 |
+
pretrained_model_name_or_path, weight_dtype
|
359 |
+
)
|
360 |
+
else: # diffusers
|
361 |
+
(tokenizers, text_encoders, unet, vae) = load_diffusers_model_xl(
|
362 |
+
pretrained_model_name_or_path, weight_dtype
|
363 |
+
)
|
364 |
+
if scheduler_name:
|
365 |
+
scheduler = create_noise_scheduler(scheduler_name, noise_scheduler_kwargs)
|
366 |
+
else:
|
367 |
+
scheduler = None
|
368 |
+
|
369 |
+
return tokenizers, text_encoders, unet, scheduler, vae
|
370 |
+
|
371 |
+
def create_noise_scheduler(
|
372 |
+
scheduler_name: AVAILABLE_SCHEDULERS = "ddpm",
|
373 |
+
noise_scheduler_kwargs=None,
|
374 |
+
prediction_type: Literal["epsilon", "v_prediction"] = "epsilon",
|
375 |
+
) -> SchedulerMixin:
|
376 |
+
name = scheduler_name.lower().replace(" ", "_")
|
377 |
+
if name.lower() == "ddim":
|
378 |
+
# https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/ddim
|
379 |
+
scheduler = DDIMScheduler(**OmegaConf.to_container(noise_scheduler_kwargs))
|
380 |
+
elif name.lower() == "ddpm":
|
381 |
+
# https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/ddpm
|
382 |
+
scheduler = DDPMScheduler(**OmegaConf.to_container(noise_scheduler_kwargs))
|
383 |
+
elif name.lower() == "lms":
|
384 |
+
# https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/lms_discrete
|
385 |
+
scheduler = LMSDiscreteScheduler(
|
386 |
+
**OmegaConf.to_container(noise_scheduler_kwargs)
|
387 |
+
)
|
388 |
+
elif name.lower() == "euler_a":
|
389 |
+
# https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/euler_ancestral
|
390 |
+
scheduler = EulerAncestralDiscreteScheduler(
|
391 |
+
**OmegaConf.to_container(noise_scheduler_kwargs)
|
392 |
+
)
|
393 |
+
elif name.lower() == "euler":
|
394 |
+
# https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/euler_ancestral
|
395 |
+
scheduler = EulerDiscreteScheduler(
|
396 |
+
**OmegaConf.to_container(noise_scheduler_kwargs)
|
397 |
+
)
|
398 |
+
elif name.lower() == "unipc":
|
399 |
+
# https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/unipc
|
400 |
+
scheduler = UniPCMultistepScheduler(
|
401 |
+
**OmegaConf.to_container(noise_scheduler_kwargs)
|
402 |
+
)
|
403 |
+
else:
|
404 |
+
raise ValueError(f"Unknown scheduler name: {name}")
|
405 |
+
|
406 |
+
return scheduler
|
407 |
+
|
408 |
+
|
409 |
+
def torch_gc():
|
410 |
+
import gc
|
411 |
+
|
412 |
+
gc.collect()
|
413 |
+
if torch.cuda.is_available():
|
414 |
+
with torch.cuda.device("cuda"):
|
415 |
+
torch.cuda.empty_cache()
|
416 |
+
torch.cuda.ipc_collect()
|
417 |
+
|
418 |
+
|
419 |
+
from enum import Enum
|
420 |
+
|
421 |
+
|
422 |
+
class CPUState(Enum):
|
423 |
+
GPU = 0
|
424 |
+
CPU = 1
|
425 |
+
MPS = 2
|
426 |
+
|
427 |
+
|
428 |
+
cpu_state = CPUState.GPU
|
429 |
+
xpu_available = False
|
430 |
+
directml_enabled = False
|
431 |
+
|
432 |
+
|
433 |
+
def is_intel_xpu():
|
434 |
+
global cpu_state
|
435 |
+
global xpu_available
|
436 |
+
if cpu_state == CPUState.GPU:
|
437 |
+
if xpu_available:
|
438 |
+
return True
|
439 |
+
return False
|
440 |
+
|
441 |
+
|
442 |
+
try:
|
443 |
+
import intel_extension_for_pytorch as ipex
|
444 |
+
|
445 |
+
if torch.xpu.is_available():
|
446 |
+
xpu_available = True
|
447 |
+
except:
|
448 |
+
pass
|
449 |
+
|
450 |
+
try:
|
451 |
+
if torch.backends.mps.is_available():
|
452 |
+
cpu_state = CPUState.MPS
|
453 |
+
import torch.mps
|
454 |
+
except:
|
455 |
+
pass
|
456 |
+
|
457 |
+
|
458 |
+
def get_torch_device():
|
459 |
+
global directml_enabled
|
460 |
+
global cpu_state
|
461 |
+
if directml_enabled:
|
462 |
+
global directml_device
|
463 |
+
return directml_device
|
464 |
+
if cpu_state == CPUState.MPS:
|
465 |
+
return torch.device("mps")
|
466 |
+
if cpu_state == CPUState.CPU:
|
467 |
+
return torch.device("cpu")
|
468 |
+
else:
|
469 |
+
if is_intel_xpu():
|
470 |
+
return torch.device("xpu")
|
471 |
+
else:
|
472 |
+
return torch.device(torch.cuda.current_device())
|
pipeline_stable_diffusion_xl_instantid.py → pipeline_stable_diffusion_xl_instantid_full.py
RENAMED
@@ -22,7 +22,6 @@ import numpy as np
|
|
22 |
import PIL.Image
|
23 |
import torch
|
24 |
import torch.nn.functional as F
|
25 |
-
from transformers import CLIPTokenizer
|
26 |
|
27 |
from diffusers.image_processor import PipelineImageInput
|
28 |
|
@@ -41,8 +40,12 @@ from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
|
|
41 |
from diffusers.utils.import_utils import is_xformers_available
|
42 |
|
43 |
from ip_adapter.resampler import Resampler
|
|
|
44 |
|
45 |
-
|
|
|
|
|
|
|
46 |
from ip_adapter.attention_processor import region_control
|
47 |
|
48 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
@@ -102,7 +105,7 @@ EXAMPLE_DOC_STRING = """
|
|
102 |
```
|
103 |
"""
|
104 |
|
105 |
-
|
106 |
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipeline
|
107 |
class LongPromptWeight(object):
|
108 |
|
@@ -482,6 +485,34 @@ class LongPromptWeight(object):
|
|
482 |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
483 |
return prompt_embeds
|
484 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
485 |
|
486 |
class StableDiffusionXLInstantIDPipeline(StableDiffusionXLControlNetPipeline):
|
487 |
|
@@ -567,7 +598,7 @@ class StableDiffusionXLInstantIDPipeline(StableDiffusionXLControlNetPipeline):
|
|
567 |
if isinstance(attn_processor, IPAttnProcessor):
|
568 |
attn_processor.scale = scale
|
569 |
|
570 |
-
def _encode_prompt_image_emb(self, prompt_image_emb, device, dtype, do_classifier_free_guidance):
|
571 |
|
572 |
if isinstance(prompt_image_emb, torch.Tensor):
|
573 |
prompt_image_emb = prompt_image_emb.clone().detach()
|
@@ -583,6 +614,11 @@ class StableDiffusionXLInstantIDPipeline(StableDiffusionXLControlNetPipeline):
|
|
583 |
prompt_image_emb = torch.cat([prompt_image_emb], dim=0)
|
584 |
|
585 |
prompt_image_emb = self.image_proj_model(prompt_image_emb)
|
|
|
|
|
|
|
|
|
|
|
586 |
return prompt_image_emb
|
587 |
|
588 |
@torch.no_grad()
|
@@ -623,7 +659,13 @@ class StableDiffusionXLInstantIDPipeline(StableDiffusionXLControlNetPipeline):
|
|
623 |
clip_skip: Optional[int] = None,
|
624 |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
625 |
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
|
|
|
|
|
|
|
|
|
|
626 |
control_mask = None,
|
|
|
627 |
**kwargs,
|
628 |
):
|
629 |
r"""
|
@@ -758,6 +800,7 @@ class StableDiffusionXLInstantIDPipeline(StableDiffusionXLControlNetPipeline):
|
|
758 |
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
759 |
otherwise a `tuple` is returned containing the output images.
|
760 |
"""
|
|
|
761 |
lpw = LongPromptWeight()
|
762 |
|
763 |
callback = kwargs.pop("callback", None)
|
@@ -789,6 +832,10 @@ class StableDiffusionXLInstantIDPipeline(StableDiffusionXLControlNetPipeline):
|
|
789 |
mult * [control_guidance_start],
|
790 |
mult * [control_guidance_end],
|
791 |
)
|
|
|
|
|
|
|
|
|
792 |
|
793 |
# 1. Check inputs. Raise error if not correct
|
794 |
self.check_inputs(
|
@@ -851,6 +898,7 @@ class StableDiffusionXLInstantIDPipeline(StableDiffusionXLControlNetPipeline):
|
|
851 |
# 3.2 Encode image prompt
|
852 |
prompt_image_emb = self._encode_prompt_image_emb(image_embeds,
|
853 |
device,
|
|
|
854 |
self.unet.dtype,
|
855 |
self.do_classifier_free_guidance)
|
856 |
|
@@ -1031,24 +1079,57 @@ class StableDiffusionXLInstantIDPipeline(StableDiffusionXLControlNetPipeline):
|
|
1031 |
controlnet_cond_scale = controlnet_cond_scale[0]
|
1032 |
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
1033 |
|
1034 |
-
|
1035 |
-
|
1036 |
-
|
1037 |
-
|
1038 |
-
|
1039 |
-
|
1040 |
-
|
1041 |
-
|
1042 |
-
|
1043 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1044 |
|
1045 |
-
|
1046 |
-
|
1047 |
-
|
1048 |
-
|
1049 |
-
|
1050 |
-
|
1051 |
-
|
1052 |
|
1053 |
if guess_mode and self.do_classifier_free_guidance:
|
1054 |
# Infered ControlNet only for the conditional batch.
|
|
|
22 |
import PIL.Image
|
23 |
import torch
|
24 |
import torch.nn.functional as F
|
|
|
25 |
|
26 |
from diffusers.image_processor import PipelineImageInput
|
27 |
|
|
|
40 |
from diffusers.utils.import_utils import is_xformers_available
|
41 |
|
42 |
from ip_adapter.resampler import Resampler
|
43 |
+
from ip_adapter.utils import is_torch2_available
|
44 |
|
45 |
+
if is_torch2_available():
|
46 |
+
from ip_adapter.attention_processor import IPAttnProcessor2_0 as IPAttnProcessor, AttnProcessor2_0 as AttnProcessor
|
47 |
+
else:
|
48 |
+
from ip_adapter.attention_processor import IPAttnProcessor, AttnProcessor
|
49 |
from ip_adapter.attention_processor import region_control
|
50 |
|
51 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
|
105 |
```
|
106 |
"""
|
107 |
|
108 |
+
from transformers import CLIPTokenizer
|
109 |
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipeline
|
110 |
class LongPromptWeight(object):
|
111 |
|
|
|
485 |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
486 |
return prompt_embeds
|
487 |
|
488 |
+
def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]):
|
489 |
+
|
490 |
+
stickwidth = 4
|
491 |
+
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
|
492 |
+
kps = np.array(kps)
|
493 |
+
|
494 |
+
w, h = image_pil.size
|
495 |
+
out_img = np.zeros([h, w, 3])
|
496 |
+
|
497 |
+
for i in range(len(limbSeq)):
|
498 |
+
index = limbSeq[i]
|
499 |
+
color = color_list[index[0]]
|
500 |
+
|
501 |
+
x = kps[index][:, 0]
|
502 |
+
y = kps[index][:, 1]
|
503 |
+
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
|
504 |
+
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
|
505 |
+
polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
|
506 |
+
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
|
507 |
+
out_img = (out_img * 0.6).astype(np.uint8)
|
508 |
+
|
509 |
+
for idx_kp, kp in enumerate(kps):
|
510 |
+
color = color_list[idx_kp]
|
511 |
+
x, y = kp
|
512 |
+
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
|
513 |
+
|
514 |
+
out_img_pil = PIL.Image.fromarray(out_img.astype(np.uint8))
|
515 |
+
return out_img_pil
|
516 |
|
517 |
class StableDiffusionXLInstantIDPipeline(StableDiffusionXLControlNetPipeline):
|
518 |
|
|
|
598 |
if isinstance(attn_processor, IPAttnProcessor):
|
599 |
attn_processor.scale = scale
|
600 |
|
601 |
+
def _encode_prompt_image_emb(self, prompt_image_emb, device, num_images_per_prompt, dtype, do_classifier_free_guidance):
|
602 |
|
603 |
if isinstance(prompt_image_emb, torch.Tensor):
|
604 |
prompt_image_emb = prompt_image_emb.clone().detach()
|
|
|
614 |
prompt_image_emb = torch.cat([prompt_image_emb], dim=0)
|
615 |
|
616 |
prompt_image_emb = self.image_proj_model(prompt_image_emb)
|
617 |
+
|
618 |
+
bs_embed, seq_len, _ = prompt_image_emb.shape
|
619 |
+
prompt_image_emb = prompt_image_emb.repeat(1, num_images_per_prompt, 1)
|
620 |
+
prompt_image_emb = prompt_image_emb.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
621 |
+
|
622 |
return prompt_image_emb
|
623 |
|
624 |
@torch.no_grad()
|
|
|
659 |
clip_skip: Optional[int] = None,
|
660 |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
661 |
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
662 |
+
|
663 |
+
# IP adapter
|
664 |
+
ip_adapter_scale=None,
|
665 |
+
|
666 |
+
# Enhance Face Region
|
667 |
control_mask = None,
|
668 |
+
|
669 |
**kwargs,
|
670 |
):
|
671 |
r"""
|
|
|
800 |
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
801 |
otherwise a `tuple` is returned containing the output images.
|
802 |
"""
|
803 |
+
|
804 |
lpw = LongPromptWeight()
|
805 |
|
806 |
callback = kwargs.pop("callback", None)
|
|
|
832 |
mult * [control_guidance_start],
|
833 |
mult * [control_guidance_end],
|
834 |
)
|
835 |
+
|
836 |
+
# 0. set ip_adapter_scale
|
837 |
+
if ip_adapter_scale is not None:
|
838 |
+
self.set_ip_adapter_scale(ip_adapter_scale)
|
839 |
|
840 |
# 1. Check inputs. Raise error if not correct
|
841 |
self.check_inputs(
|
|
|
898 |
# 3.2 Encode image prompt
|
899 |
prompt_image_emb = self._encode_prompt_image_emb(image_embeds,
|
900 |
device,
|
901 |
+
num_images_per_prompt,
|
902 |
self.unet.dtype,
|
903 |
self.do_classifier_free_guidance)
|
904 |
|
|
|
1079 |
controlnet_cond_scale = controlnet_cond_scale[0]
|
1080 |
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
1081 |
|
1082 |
+
if isinstance(self.controlnet, MultiControlNetModel):
|
1083 |
+
down_block_res_samples_list, mid_block_res_sample_list = [], []
|
1084 |
+
for control_index in range(len(self.controlnet.nets)):
|
1085 |
+
controlnet = self.controlnet.nets[control_index]
|
1086 |
+
if control_index == 0:
|
1087 |
+
# assume fhe first controlnet is IdentityNet
|
1088 |
+
controlnet_prompt_embeds = prompt_image_emb
|
1089 |
+
else:
|
1090 |
+
controlnet_prompt_embeds = prompt_embeds
|
1091 |
+
down_block_res_samples, mid_block_res_sample = controlnet(control_model_input,
|
1092 |
+
t,
|
1093 |
+
encoder_hidden_states=controlnet_prompt_embeds,
|
1094 |
+
controlnet_cond=image[control_index],
|
1095 |
+
conditioning_scale=cond_scale[control_index],
|
1096 |
+
guess_mode=guess_mode,
|
1097 |
+
added_cond_kwargs=controlnet_added_cond_kwargs,
|
1098 |
+
return_dict=False)
|
1099 |
+
|
1100 |
+
# controlnet mask
|
1101 |
+
if control_index == 0 and control_mask_wight_image_list is not None:
|
1102 |
+
down_block_res_samples = [
|
1103 |
+
down_block_res_sample * mask_weight
|
1104 |
+
for down_block_res_sample, mask_weight in zip(down_block_res_samples, control_mask_wight_image_list)
|
1105 |
+
]
|
1106 |
+
mid_block_res_sample *= control_mask_wight_image_list[-1]
|
1107 |
+
|
1108 |
+
down_block_res_samples_list.append(down_block_res_samples)
|
1109 |
+
mid_block_res_sample_list.append(mid_block_res_sample)
|
1110 |
+
|
1111 |
+
mid_block_res_sample = torch.stack(mid_block_res_sample_list).sum(dim=0)
|
1112 |
+
down_block_res_samples = [torch.stack(down_block_res_samples).sum(dim=0) for down_block_res_samples in
|
1113 |
+
zip(*down_block_res_samples_list)]
|
1114 |
+
else:
|
1115 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
1116 |
+
control_model_input,
|
1117 |
+
t,
|
1118 |
+
encoder_hidden_states=prompt_image_emb,
|
1119 |
+
controlnet_cond=image,
|
1120 |
+
conditioning_scale=cond_scale,
|
1121 |
+
guess_mode=guess_mode,
|
1122 |
+
added_cond_kwargs=controlnet_added_cond_kwargs,
|
1123 |
+
return_dict=False,
|
1124 |
+
)
|
1125 |
|
1126 |
+
# controlnet mask
|
1127 |
+
if control_mask_wight_image_list is not None:
|
1128 |
+
down_block_res_samples = [
|
1129 |
+
down_block_res_sample * mask_weight
|
1130 |
+
for down_block_res_sample, mask_weight in zip(down_block_res_samples, control_mask_wight_image_list)
|
1131 |
+
]
|
1132 |
+
mid_block_res_sample *= control_mask_wight_image_list[-1]
|
1133 |
|
1134 |
if guess_mode and self.do_classifier_free_guidance:
|
1135 |
# Infered ControlNet only for the conditional batch.
|
requirements.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
diffusers==0.25.
|
2 |
torch==2.0.0
|
3 |
torchvision==0.15.1
|
4 |
-
transformers==4.
|
5 |
accelerate
|
6 |
safetensors
|
7 |
einops
|
@@ -11,4 +11,8 @@ omegaconf
|
|
11 |
peft
|
12 |
huggingface-hub==0.20.2
|
13 |
opencv-python
|
14 |
-
insightface
|
|
|
|
|
|
|
|
|
|
1 |
+
diffusers==0.25.1
|
2 |
torch==2.0.0
|
3 |
torchvision==0.15.1
|
4 |
+
transformers==4.37.1
|
5 |
accelerate
|
6 |
safetensors
|
7 |
einops
|
|
|
11 |
peft
|
12 |
huggingface-hub==0.20.2
|
13 |
opencv-python
|
14 |
+
insightface
|
15 |
+
gradio
|
16 |
+
controlnet_aux
|
17 |
+
gdown
|
18 |
+
peft
|