import cv2 import numpy as np from scipy.ndimage import label from numba import njit def get_ball_structuring_element(radius): """Get a ball shape structuring element with specific radius for morphology operation. The radius of ball usually equals to (leaking_gap_size / 2). # Arguments radius: radius of ball shape. # Returns an array of ball structuring element. """ return cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * radius + 1, 2 * radius + 1)) def get_unfilled_point(image): """Get points belong to unfilled(value==255) area. # Arguments image: an image. # Returns an array of points. """ y, x = np.where(image == 255) return np.stack((x.astype(int), y.astype(int)), axis=-1) def exclude_area(image, radius): """Perform erosion on image to exclude points near the boundary. We want to pick part using floodfill from the seed point after dilation. When the seed point is near boundary, it might not stay in the fill, and would not be a valid point for next floodfill operation. So we ignore these points with erosion. # Arguments image: an image. radius: radius of ball shape. # Returns an image after dilation. """ return cv2.morphologyEx(image, cv2.MORPH_ERODE, get_ball_structuring_element(radius), anchor=(-1, -1), iterations=1) def trapped_ball_fill_single(image, seed_point, radius): """Perform a single trapped ball fill operation. # Arguments image: an image. the image should consist of white background, black lines and black fills. the white area is unfilled area, and the black area is filled area. seed_point: seed point for trapped-ball fill, a tuple (integer, integer). radius: radius of ball shape. # Returns an image after filling. """ ball = get_ball_structuring_element(radius) pass1 = np.full(image.shape, 255, np.uint8) pass2 = np.full(image.shape, 255, np.uint8) im_inv = cv2.bitwise_not(image) # Floodfill the image mask1 = cv2.copyMakeBorder(im_inv, 1, 1, 1, 1, cv2.BORDER_CONSTANT, 0) _, pass1, _, _ = cv2.floodFill(pass1, mask1, seed_point, 0, 0, 0, 4) # Perform dilation on image. The fill areas between gaps became disconnected. pass1 = cv2.morphologyEx(pass1, cv2.MORPH_DILATE, ball, anchor=(-1, -1), iterations=1) mask2 = cv2.copyMakeBorder(pass1, 1, 1, 1, 1, cv2.BORDER_CONSTANT, 0) # Floodfill with seed point again to select one fill area. _, pass2, _, rect = cv2.floodFill(pass2, mask2, seed_point, 0, 0, 0, 4) # Perform erosion on the fill result leaking-proof fill. pass2 = cv2.morphologyEx(pass2, cv2.MORPH_ERODE, ball, anchor=(-1, -1), iterations=1) return pass2 def trapped_ball_fill_multi(image, radius, method='mean', max_iter=1000): """Perform multi trapped ball fill operations until all valid areas are filled. # Arguments image: an image. The image should consist of white background, black lines and black fills. the white area is unfilled area, and the black area is filled area. radius: radius of ball shape. method: method for filtering the fills. 'max' is usually with large radius for select large area such as background. max_iter: max iteration number. # Returns an array of fills' points. """ print('trapped-ball ' + str(radius)) unfill_area = image filled_area, filled_area_size, result = [], [], [] for _ in range(max_iter): points = get_unfilled_point(exclude_area(unfill_area, radius)) if not len(points) > 0: break fill = trapped_ball_fill_single(unfill_area, (points[0][0], points[0][1]), radius) unfill_area = cv2.bitwise_and(unfill_area, fill) filled_area.append(np.where(fill == 0)) filled_area_size.append(len(np.where(fill == 0)[0])) filled_area_size = np.asarray(filled_area_size) if method == 'max': area_size_filter = np.max(filled_area_size) elif method == 'median': area_size_filter = np.median(filled_area_size) elif method == 'mean': area_size_filter = np.mean(filled_area_size) else: area_size_filter = 0 result_idx = np.where(filled_area_size >= area_size_filter)[0] for i in result_idx: result.append(filled_area[i]) return result def flood_fill_single(im, seed_point): """Perform a single flood fill operation. # Arguments image: an image. the image should consist of white background, black lines and black fills. the white area is unfilled area, and the black area is filled area. seed_point: seed point for trapped-ball fill, a tuple (integer, integer). # Returns an image after filling. """ pass1 = np.full(im.shape, 255, np.uint8) im_inv = cv2.bitwise_not(im) mask1 = cv2.copyMakeBorder(im_inv, 1, 1, 1, 1, cv2.BORDER_CONSTANT, 0) _, pass1, _, _ = cv2.floodFill(pass1, mask1, seed_point, 0, 0, 0, 4) return pass1 @njit def count_all(labeled_array, all_counts): M = labeled_array.shape[0] N = labeled_array.shape[1] for x in range(M): for y in range(N): i = labeled_array[x, y] - 1 if i > -1: all_counts[i] = all_counts[i] + 1 return @njit def trace_all(labeled_array, xs, ys, cs): M = labeled_array.shape[0] N = labeled_array.shape[1] for x in range(M): for y in range(N): current_label = labeled_array[x, y] - 1 if current_label > -1: current_label_count = cs[current_label] xs[current_label][current_label_count] = x ys[current_label][current_label_count] = y cs[current_label] = current_label_count + 1 return def find_all(labeled_array): hist_size = int(np.max(labeled_array)) if hist_size == 0: return [] all_counts = [0 for _ in range(hist_size)] count_all(labeled_array, all_counts) xs = [np.zeros(shape=(item, ), dtype=np.uint32) for item in all_counts] ys = [np.zeros(shape=(item, ), dtype=np.uint32) for item in all_counts] cs = [0 for item in all_counts] trace_all(labeled_array, xs, ys, cs) filled_area = [] for _ in range(hist_size): filled_area.append((xs[_], ys[_])) return filled_area def flood_fill_multi(image, merge=False): print('floodfill') labeled_array, num_features = label(image / 255) print('floodfill_ok1') filled_area = find_all(labeled_array) print('floodfill_ok2') if merge: new_fill = [] for item in filled_area: if len(item[0]) > 8: new_fill.append(item) return new_fill print('floodfill_ok3') return filled_area def old_flood_fill_multi(image, max_iter=20000): """Perform multi flood fill operations until all valid areas are filled. This operation will fill all rest areas, which may result large amount of fills. # Arguments image: an image. the image should contain white background, black lines and black fills. the white area is unfilled area, and the black area is filled area. max_iter: max iteration number. # Returns an array of fills' points. """ print('floodfill') unfill_area = image filled_area = [] for _ in range(max_iter): points = get_unfilled_point(unfill_area) if not len(points) > 0: break fill = flood_fill_single(unfill_area, (points[0][0], points[0][1])) unfill_area = cv2.bitwise_and(unfill_area, fill) filled_area.append(np.where(fill == 0)) return filled_area def mark_fill(image, fills): """Mark filled areas with 0. # Arguments image: an image. fills: an array of fills' points. # Returns an image. """ result = image.copy() for fill in fills: result[fill] = 0 return result def build_fill_map(image, fills): """Make an image(array) with each pixel(element) marked with fills' id. id of line is 0. # Arguments image: an image. fills: an array of fills' points. # Returns an array. """ result = np.zeros(image.shape[:2], np.int) for index, fill in enumerate(fills): if(len(fill[0]) == 0): continue result[fill] = index + 1 return result def show_fill_map(fillmap): """Mark filled areas with colors. It is useful for visualization. # Arguments image: an image. fills: an array of fills' points. # Returns an image. """ # Generate color for each fill randomly. colors = np.random.randint(0, 255, (np.max(fillmap) + 1, 3)) # Id of line is 0, and its color is black. colors[0] = [0, 0, 0] return colors[fillmap] def get_bounding_rect(points): """Get a bounding rect of points. # Arguments points: array of points. # Returns rect coord """ x1, y1, x2, y2 = np.min(points[1]), np.min(points[0]), np.max(points[1]), np.max(points[0]) return x1, y1, x2, y2 def get_border_bounding_rect(h, w, p1, p2, r): """Get a valid bounding rect in the image with border of specific size. # Arguments h: image max height. w: image max width. p1: start point of rect. p2: end point of rect. r: border radius. # Returns rect coord """ x1, y1, x2, y2 = p1[0], p1[1], p2[0], p2[1] x1 = x1 - r if 0 < x1 - r else 0 y1 = y1 - r if 0 < y1 - r else 0 x2 = x2 + r + 1 if x2 + r + 1 < w else w y2 = y2 + r + 1 if y2 + r + 1 < h else h return x1, y1, x2, y2 def get_border_point(points, rect, max_height, max_width): """Get border points of a fill area # Arguments points: points of fill . rect: bounding rect of fill. max_height: image max height. max_width: image max width. # Returns points , convex shape of points """ # Get a local bounding rect. border_rect = get_border_bounding_rect(max_height, max_width, rect[:2], rect[2:], 2) # Get fill in rect. fill = np.zeros((border_rect[3] - border_rect[1], border_rect[2] - border_rect[0]), np.uint8) # Move points to the rect. fill[(points[0] - border_rect[1], points[1] - border_rect[0])] = 255 # Get shape. _, contours, _ = cv2.findContours(fill, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # approx_shape = cv2.approxPolyDP(contours[0], 0.02 * cv2.arcLength(contours[0], True), True) # Get border pixel. # Structuring element in cross shape is used instead of box to get 4-connected border. cross = cv2.getStructuringElement(cv2.MORPH_CROSS, (3, 3)) border_pixel_mask = cv2.morphologyEx(fill, cv2.MORPH_DILATE, cross, anchor=(-1, -1), iterations=1) - fill border_pixel_points = np.where(border_pixel_mask == 255) # Transform points back to fillmap. border_pixel_points = (border_pixel_points[0] + border_rect[1], border_pixel_points[1] + border_rect[0]) return border_pixel_points def merge_fill(fillmap, max_iter=20): """Merge fill areas. # Arguments fillmap: an image. max_iter: max iteration number. # Returns an image. """ max_height, max_width = fillmap.shape[:2] result = fillmap.copy() for i in range(max_iter): print('merge ' + str(i + 1)) result[np.where(fillmap == 0)] = 0 fill_id = np.unique(result.flatten()) fills = [] for j in fill_id: point = np.where(result == j) fills.append({ 'id': j, 'point': point, 'area': len(point[0]), }) for j, f in enumerate(fills): # ignore lines if f['id'] == 0: continue if f['area'] < 5: result[f['point']] = 0 if len(fill_id) == len(np.unique(result.flatten())): break return result def merge_one(fillmap): result = fillmap.copy() print('merge') result[np.where(fillmap == 0)] = 0 fill_id = np.unique(result.flatten()) fills = [] for j in fill_id: point = np.where(result == j) fills.append({ 'id': j, 'point': point, 'area': len(point[0]), }) for j, f in enumerate(fills): # ignore lines if f['id'] == 0: continue if f['area'] < 5: result[f['point']] = 0 return result