File size: 6,758 Bytes
e9d4572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import os
import numpy as np
from scipy.spatial import ConvexHull
from sklearn.cluster import MiniBatchKMeans
from tricks import *
import cv2


ksd = 8
mbc = MiniBatchKMeans(ksd)


def get_theme(img):
    images = np.reshape(cv2.resize(img, (256, 256)), (256 * 256, 3))
    hull = ConvexHull(images)
    return hull.points[hull.vertices]


def simplify_points(points, img):
    labels = mbc.fit(points)
    new_points = []
    all_center = np.mean(labels.cluster_centers_, axis=0)
    distances = np.sum((points - all_center) ** 2, axis=1) ** 0.5

    for idx in range(ksd):
        candidates = points[labels.labels_ == idx]
        scores = distances[labels.labels_ == idx]
        best_id = np.argmax(scores)
        new_points.append(candidates[best_id])

    new_points.sort(key=np.sum, reverse=True)

    new_points = np.stack(new_points, axis=0)
    return new_points.clip(0, 255).astype(np.uint8)


def get_ini_layers(miku, points):
    results = []
    final_target = miku.astype(np.float32)
    bg = np.zeros_like(final_target, dtype=np.float32) + points[0]
    results.append(np.concatenate([bg, np.zeros_like(bg, dtype=np.float32) + 255], axis=2)[:, :, 0:4])
    current_result = bg.copy()
    for layer_index in range(1, ksd):
        current_base = current_result.astype(np.float32)
        current_color = np.zeros_like(final_target, dtype=np.float32) + points[layer_index]
        overall_direction = final_target - current_base
        avaliable_direction = current_color - current_base
        current_alpha = np.sum(overall_direction * avaliable_direction, axis=2, keepdims=True) / np.sum(
            avaliable_direction * avaliable_direction, axis=2, keepdims=True)
        current_alpha = current_alpha.clip(0, 1)
        current_result = (current_color * current_alpha + current_base * (1 - current_alpha)).clip(0, 255)
        results.append(np.concatenate([current_color, current_alpha * 255.0], axis=2))
    return results


def make_reconstruction(layers):
    bg = np.zeros_like(layers[0], dtype=np.float32)[:, :, 0:3] + 255
    for item in layers:
        current_alpha = item[:, :, 3:4] / 255.0
        bg = item[:, :, 0:3] * current_alpha + bg * (1 - current_alpha)
    return bg


def improve_layers(layers, miku):
    reconstruction = make_reconstruction(layers)
    b = miku - reconstruction
    new_layers = []
    for item in layers:
        new_item = item.copy()
        new_item[:, :, 0:3] = (new_item[:, :, 0:3] + b).clip(0, 255)
        new_layers.append(new_item)
    return new_layers


def cluster_all(labeled_array, num_features):
    xs = [[] for _ in range(num_features)]
    ys = [[] for _ in range(num_features)]
    M = labeled_array.shape[0]
    N = labeled_array.shape[1]
    for x in range(M):
        for y in range(N):
            i = labeled_array[x, y]
            xs[i].append(x)
            ys[i].append(y)
    result = []
    for _ in range(num_features):
        result.append((np.array(xs[_]), np.array(ys[_])))
    return result


def meder(x):
    y = x.copy()
    y = cv2.medianBlur(y, 5)
    y = cv2.medianBlur(y, 5)
    y = cv2.medianBlur(y, 3)
    y = cv2.medianBlur(y, 3)
    return y


def re_med(s_2048):

    sample_2048 = s_2048.astype(np.float32)
    sample_1024 = cv2.pyrDown(sample_2048)
    sample_512 = cv2.pyrDown(sample_1024)
    sample_256 = cv2.pyrDown(sample_512)

    gradient_2048 = sample_2048 - cv2.pyrUp(sample_1024)
    gradient_1024 = sample_1024 - cv2.pyrUp(sample_512)
    gradient_512 = sample_512 - cv2.pyrUp(sample_256)

    rec_256 = meder(sample_256)
    rec_512 = cv2.pyrUp(rec_256) + meder(gradient_512)
    rec_1024 = cv2.pyrUp(rec_512) + meder(gradient_1024)
    rec_2048 = cv2.pyrUp(rec_1024) + meder(gradient_2048)
    return rec_2048


def process_ctx(sketch, solid, render):
    solid = solid.astype(np.float32)
    sketch = d_resize(cv2.cvtColor(sketch, cv2.COLOR_GRAY2RGB), solid.shape).astype(np.float32)
    render = d_resize(render, solid.shape).astype(np.float32)
    alpha = sketch / 255.0
    all_diff = render - solid
    all_lines = render.copy()
    all_lines = cv2.erode(all_lines, np.ones((3,3), np.uint8)) * 0.618
    all_diff = re_med(all_diff)
    all_lines = re_med(all_lines)
    recon = solid + all_diff
    recon = recon * alpha + all_lines * (1 - alpha)
    recon2 = (solid + all_diff) * alpha + re_med(solid) * (1 - alpha)
    recon3 = reason_blending(recon2, sketch)
    return recon.clip(0, 255).astype(np.uint8), recon2.clip(0, 255).astype(np.uint8), recon3.clip(0, 255).astype(np.uint8)


def process_psd(sketch, solid, render, path='./'):
    recon = process_ctx(sketch, solid, render)
    points = get_theme(solid)
    points = simplify_points(points, solid)
    compositions = get_ini_layers(solid, points)
    compositions = improve_layers(compositions, solid)
    for _ in range(ksd):
        cv2.imwrite(path + str(_ + 1) + '.color.png', compositions[_].clip(0, 255).astype(np.uint8))
    solid = make_reconstruction(compositions).clip(0, 255).astype(np.uint8)
    os.makedirs(path, exist_ok=True)
    alpha = 1 - sketch.astype(np.float32) / 255.0
    now = solid
    now = (now.astype(np.float32) + sketch.astype(np.float32) - 255.0).clip(0, 255)
    sketch = 255 + now - solid
    cv2.imwrite(path + '9.sketch.png', sketch.clip(0, 255).astype(np.uint8))
    all_diff = recon.astype(np.float32) - now
    all_light = all_diff.copy()
    all_shadow = - all_diff.copy()
    all_light[all_light < 0] = 0
    all_shadow[all_shadow < 0] = 0
    sketch_color = all_light * alpha
    light = all_light * (1 - alpha)
    all_shadow = 255 - all_shadow
    cv2.imwrite(path + '10.sketch_color.png', sketch_color.clip(0, 255).astype(np.uint8))
    cv2.imwrite(path + '11.light.png', light.clip(0, 255).astype(np.uint8))
    cv2.imwrite(path + '12.shadow.png', all_shadow.clip(0, 255).astype(np.uint8))
    return recon


def process_albedo(albedo, composition, sketch):
    DEL = albedo.astype(np.float32)
    HSV = cv2.cvtColor(albedo, cv2.COLOR_RGB2HSV).astype(np.float32)
    YUV = cv2.cvtColor(albedo, cv2.COLOR_RGB2YUV).astype(np.float32)
    solid = composition.astype(np.float32)
    light = sketch[:, :, None].astype(np.float32)

    DEL = DEL * light / 255.0 + solid * (1 - light / 255.0)
    HSV[:, :, 2:3] = np.minimum(HSV[:, :, 2:3], light)
    YUV[:, :, 0:1] = np.minimum(YUV[:, :, 0:1], light)

    DEL = DEL.clip(0, 255).astype(np.uint8)
    HSV = HSV.clip(0, 255).astype(np.uint8)
    YUV = YUV.clip(0, 255).astype(np.uint8)

    return cv2.cvtColor(HSV, cv2.COLOR_HSV2RGB), cv2.cvtColor(YUV, cv2.COLOR_YUV2RGB), DEL


def process_overlay(composition, sketch):
    RGB = composition.astype(np.float32)
    alpha = sketch[:, :, None].astype(np.float32) / 255.0
    return (RGB * alpha).clip(0, 255).astype(np.uint8)