Spaces:
Runtime error
Runtime error
File size: 12,346 Bytes
e9d4572 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
import re
import base64
import datetime
import sys
import pickle
import gzip
import json
import time
import gradio as gr
from ai import *
from tricks import *
from decompositioner import *
from rendering import *
import os
import glob
import shutil
splash = glob.glob('ui/web-mobile/splash*')[0]
os.remove(splash)
shutil.copy('res/splash.png', splash)
with open('ui/web-mobile/index.html', 'r', encoding='utf-8') as f:
page = f.read()
with open('ui/web-mobile/index.html', 'w', encoding='utf-8') as f:
f.write(page.replace('Cocos Creator | ', ''))
def cv2_encode(image: np.ndarray, name):
if image is None:
return 'null'
if '.jpg' in name:
_, data = cv2.imencode('.jpeg', image)
return 'data:image/jpeg;base64,' + base64.b64encode(data).decode('utf8')
else:
_, data = cv2.imencode('.png', image)
return 'data:image/png;base64,' + base64.b64encode(data).decode('utf8')
def get_request_image(request, name):
img = request.get(name)
img = re.sub('^data:image/.+;base64,', '', img)
img = base64.b64decode(img)
img = np.fromstring(img, dtype=np.uint8)
img = cv2.imdecode(img, -1)
return img
def npcache(history, room_id, name, data):
rooms = list(filter(lambda _room: _room["id"] == room_id, history))
if len(rooms) == 0:
room = { "id": room_id }
history.append(room)
else:
room = rooms[0]
room[name] = data
def npread(history, room_id, name):
rooms = list(filter(lambda _room: _room["id"] == room_id, history))
if len(rooms) == 0:
return None
else:
room = rooms[0]
return room.get(name, None)
def upload_sketch(json_str, history):
request = json.loads(json_str)
timenow = time.time()
ID = datetime.datetime.now().strftime('H%HM%MS%S')
room = datetime.datetime.now().strftime('%b%dH%HM%MS%S') + 'R' + str(np.random.randint(100, 999))
sketch = from_png_to_jpg(get_request_image(request, 'sketch'))
npcache(history, room, 'sketch.original.jpg', sketch)
sketch = go_tail(cli_norm(min_resize(sketch, 512)))
print('original_sketch saved')
s256 = go_vector(go_cal(mk_resize(sketch, 8)))[:, :, 0]
print('s256')
s512 = go_vector(go_cal(d_resize(sketch, s256.shape, 2.0)))[:, :, 0]
print('s512')
s1024 = go_vector(go_cal(d_resize(sketch, s256.shape, 4.0)))[:, :, 0]
print('s1024')
npcache(history, room, 'sketch.s1024.png', s1024)
npcache(history, room, 'sketch.s512.png', s512)
npcache(history, room, 'sketch.s256.png', s256)
print('edge processed')
fill = double_fill(s1024, s512, s256)
npcache(history, room, 'sketch.fill', fill)
print('filled')
npcache(history, room, 'sketch.colorization.png', np.min(sketch, axis=2))
print('sketch processed')
print(time.time() - timenow)
if len(history) > 5:
history = history[-5:]
return room + '_' + ID, history
def request_result(json_str, history):
request = json.loads(json_str)
timenow = time.time()
room = request.get("room")
if len(list(filter(lambda _room: _room["id"] == room, history))) == 0:
return None, history
skipper = str(request.get("skipper"))
light_r = float(request.get("r"))
light_g = float(request.get("g"))
light_b = float(request.get("b"))
light_h = float(request.get("h"))
light_max = max([light_r, light_g, light_b, light_h])
inv4 = int(request.get("inv4"))
print('inv4=' + str(inv4))
light_r = (light_r + 1e-5) / (light_max + 1e-5)
light_g = (light_g + 1e-5) / (light_max + 1e-5)
light_b = (light_b + 1e-5) / (light_max + 1e-5)
light_h *= 600.0
light_d = request.get("d")
need_render = int(request.get("need_render"))
print([light_r, light_g, light_b, light_d])
ID = datetime.datetime.now().strftime('H%HM%MS%S')
points = request.get("points")
points = json.loads(points)
npcache(history, room, 'points.' + ID + '.txt', points)
if len(points) > 500:
return None, history
for _ in range(len(points)):
points[_][1] = 1 - points[_][1]
fill = npread(history, room, 'sketch.fill')
s1024 = npread(history, room, 'sketch.s1024.png')
sketch = npread(history, room, 'sketch.colorization.png')
print(skipper)
if npread(history, room, 'albedo.' + skipper + '.png') is not None:
albedo = npread(history, room, 'albedo.' + skipper + '.png')
npcache(history, room, 'albedo.' + ID + '.png', albedo)
print('albedo readed')
else:
faceID = int(request.get("faceID")) - 65535
print(faceID)
if faceID > -1:
print('fake ref')
face = from_png_to_jpg(cv2.imread("refs/" + str(faceID + 1) + ".png", cv2.IMREAD_UNCHANGED))
else:
print('get ref')
face = from_png_to_jpg(get_request_image(request, 'face'))
npcache(history, room, 'face.' + ID + '.jpg', face)
face = s_enhance(face)
print('request result room = ' + str(room) + ', ID = ' + str(ID))
print('processing painting in ' + room)
if inv4 > 0:
sketch_1024 = k_resize(sketch, 64)
else:
sketch_1024 = k_resize(sketch, 48)
hints_1024 = ini_hint(sketch_1024)
hints_1024 = opreate_normal_hint(hints_1024, points, length=2, skip_sp=True)
baby = go_head(
sketch=sketch_1024,
global_hint=k_resize(face, 14),
local_hint=hints_1024
)
npcache(history, room, 'baby.' + ID + '.jpg', baby)
print('baby born')
composition = d_resize(re_deatlize(deatlize(balance_fill(baby, fill, opreate_normal_hint(ini_hint(s1024), points, length=2, skip_sp=True), s1024)), s1024), sketch.shape)
npcache(history, room, 'composition.' + ID + '.jpg', composition)
gird = process_overlay(composition, sketch)
npcache(history, room, 'gird.' + ID + '.jpg', gird)
print('composition saved')
if inv4 > 0:
albedo = go_render(sketch_1024, d_resize(composition, sketch_1024.shape, 0.5), hints_1024)
albedo = go_tail(albedo)
albedo = d_resize(re_deatlize(d_resize(albedo, s1024.shape), s1024), sketch.shape)
albedo = cv2.cvtColor(albedo, cv2.COLOR_RGB2YUV)
albedo[:, :, 0] = go_vgg7(albedo[:, :, 0])
albedo = cv2.cvtColor(albedo, cv2.COLOR_YUV2RGB)
else:
albedo = re_deatlize(d_resize(baby, s1024.shape), s1024)
albedo = d_resize(albedo, sketch.shape, 0.25)
albedo = go_tail(albedo)
albedo = go_tail(albedo)
albedo = d_resize(albedo, sketch.shape)
boundary = sketch.astype(np.float32)
boundary = cv2.GaussianBlur(boundary, (0, 0), 1.618) - boundary
boundary = boundary.clip(0, 255)
albedo = cv2.cvtColor(albedo, cv2.COLOR_RGB2HSV).astype(np.float32)
albedo[:, :, 1] += albedo[:, :, 1] * boundary / 48.0
albedo[:, :, 2] -= boundary
albedo = cv2.cvtColor(albedo.clip(0, 255).astype(np.uint8), cv2.COLOR_HSV2RGB)
npcache(history, room, 'albedo.' + ID + '.png', albedo)
print('albedo saved')
if need_render == 0:
npcache(history, room, 'result.' + ID + '.jpg', albedo)
# cv2.imwrite('results/' + room + '.' + ID + '.jpg', albedo)
print(time.time() - timenow)
return room + '_' + ID, history
HSV, YUV, DEL = process_albedo(albedo, composition, sketch)
npcache(history, room, 'HSV.' + ID + '.jpg', HSV)
npcache(history, room, 'YUV.' + ID + '.jpg', YUV)
npcache(history, room, 'DEL.' + ID + '.jpg', DEL)
print('HSV YUV DEL')
albedo_s1024 = d_resize(albedo, s1024.shape)
matting = go_mat(albedo_s1024)
matting = np.tile(matting[:, :, None], [1, 1, 3])
matting = shade_fill(matting, fill, opreate_normal_hint(ini_hint(s1024), points, length=2, skip_sp=False), s1024)
matting = matting[:, :, 0]
depth = np.zeros_like(matting, dtype=np.uint8) + 255
depth[matting < 127] = 127
depth[s1024 < 250] = 0
npcache(history, room, 'depth.' + ID + '.jpg', depth)
print('depth saved')
normal = go_norm(depth).astype(np.float32)
normal = ((normal + 1e-4) / (np.max(normal, axis=2, keepdims=True) + 1e-4) * 255.0).clip(0, 255).astype(np.uint8)
normal[matting < 127] = 255
normal = re_deatlize(normal, s1024)
normal = d_resize(normal, sketch.shape)
npcache(history, room, 'normal.' + ID + '.jpg', normal)
print('norm saved')
mask = np.zeros_like(matting, dtype=np.uint8) + 255
mask[matting < 127] = 0
mask = d_resize(mask, sketch.shape)
mask[mask < 127] = 0
mask[mask > 0] = 255
if int(light_d) == 0:
result = small_render(normal, mask, albedo, s1024, r=light_r, g=light_g, b=light_b, h=light_h, left=True, top=True)
elif int(light_d) == 1:
result = small_render(normal, mask, albedo, s1024, r=light_r, g=light_g, b=light_b, h=light_h, left=False, top=True)
elif int(light_d) == 2:
result = small_render(normal, mask, albedo, s1024, r=light_r, g=light_g, b=light_b, h=light_h, left=True, top=False)
else:
result = small_render(normal, mask, albedo, s1024, r=light_r, g=light_g, b=light_b, h=light_h, left=False, top=False)
if need_render == 2:
npcache(history, room, 'result.' + ID + '.jpg', result)
# cv2.imwrite('results/' + room + '.' + ID + '.jpg', result)
print(time.time() - timenow)
return room + '_' + ID, history
print('result saved')
preview = np.concatenate([np.tile(sketch[:, :, None], [1, 1, 3]), albedo, result], axis=1)
npcache(history, room, 'preview.' + ID + '.jpg', preview)
print('preview saved')
npcache(history, room, 'result.' + ID + '.jpg', result)
# cv2.imwrite('results/' + room + '.' + ID + '.jpg', preview)
print(time.time() - timenow)
return room + '_' + ID, history
def download_result(name, history):
room_id, name = name.split('/')
rooms = list(filter(lambda _room: _room["id"] == room_id, history))
if len(rooms) == 0:
return None
else:
room = rooms[0]
real_name = None
for k in room.keys():
if name in k:
real_name = k
break
if real_name is None:
return None
name = real_name
result = room.get(name, None)
if 'points' in name:
return json.dumps(result)
return cv2_encode(result, name)
with gr.Blocks() as demo:
history = gr.State(value=[])
with gr.Row():
with gr.Column():
btn_show = gr.Button("Open Style2Paints V4.2")
btn_show.click(None, _js="(_) => open('file/ui/web-mobile/index.html')")
with gr.Row():
with gr.Box():
with gr.Row():
upload_sketch_json = gr.Textbox(label="upload_sketch(json string)")
with gr.Row():
upload_sketch_btn = gr.Button(label="Submit sketch json")
with gr.Row():
upload_sketch_result = gr.Textbox(label="Result", interactive=False)
upload_sketch_btn.click(upload_sketch, [upload_sketch_json, history], [upload_sketch_result, history], api_name="upload_sketch")
with gr.Box():
with gr.Row():
request_result_json = gr.Textbox(label="request_result(json string)")
with gr.Row():
request_result_btn = gr.Button(label="Submit json of request for result")
with gr.Row():
request_result_result = gr.Textbox(label="Result", interactive=False)
upload_sketch_btn.click(request_result, [request_result_json, history], [request_result_result, history], api_name="request_result")
with gr.Box():
with gr.Row():
download_result_json = gr.Textbox(label="download_result(json string)")
with gr.Row():
download_result_btn = gr.Button(label="Submit json of download for result")
with gr.Row():
download_result_result = gr.Textbox(label="Result", interactive=False)
upload_sketch_btn.click(download_result, [download_result_json, history], [download_result_result], api_name="download_result")
demo.launch()
|