Spaces:
Runtime error
Runtime error
File size: 5,568 Bytes
e9d4572 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import tensorflow
tensorflow.compat.v1.disable_v2_behavior()
tf = tensorflow.compat.v1
import keras
import numpy as np
from config import *
from keras.models import load_model
from smoother import *
import keras.backend as K
from models import *
def ToGray(x):
R = x[:, :, :, 0:1]
G = x[:, :, :, 1:2]
B = x[:, :, :, 2:3]
return 0.30 * R + 0.59 * G + 0.11 * B
def RGB2YUV(x):
R = x[:, :, :, 0:1]
G = x[:, :, :, 1:2]
B = x[:, :, :, 2:3]
Y = 0.299 * R + 0.587 * G + 0.114 * B
U = 0.492 * (B - Y) + 128
V = 0.877 * (R - Y) + 128
return tf.concat([Y, U, V], axis=3)
def YUV2RGB(x):
Y = x[:, :, :, 0:1]
U = x[:, :, :, 1:2]
V = x[:, :, :, 2:3]
R = Y + 1.140 * (V - 128)
G = Y - 0.394 * (U - 128) - 0.581 * (V - 128)
B = Y + 2.032 * (U - 128)
return tf.concat([R, G, B], axis=3)
def VGG2RGB(x):
return (x + [103.939, 116.779, 123.68])[:, :, :, ::-1]
def blur(x):
return Smoother({'data': tf.pad(x, [[0, 0], [9, 9], [9, 9], [0, 0]], 'SYMMETRIC')}, 7, 2).get_output()[:, 9: -9, 9: -9, :]
def norm_feature(x, core):
cs0 = tf.shape(core)[1]
cs1 = tf.shape(core)[2]
small = tf.image.resize_area(x, (cs0, cs1))
avged = tf.nn.avg_pool(tf.pad(small, [[0, 0], [2, 2], [2, 2], [0, 0]], 'REFLECT'), [1, 5, 5, 1], [1, 1, 1, 1], 'VALID')
return tf.image.resize_bicubic(avged, tf.shape(x)[1:3])
def upsample(x):
return K.resize_images(x, 2, 2, 'channels_last')
def downsample(x):
return tf.nn.avg_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
def nts(x):
return (x + [103.939, 116.779, 123.68])[:, :, :, ::-1] / 255.0
session = keras.backend.get_session()
ip1 = tf.placeholder(dtype=tf.float32, shape=(None, None, None, 1))
ip3 = tf.placeholder(dtype=tf.float32, shape=(None, None, None, 3))
ip4 = tf.placeholder(dtype=tf.float32, shape=(None, None, None, 4))
print('1')
vector = make_diff_net()
vector_op = 255.0 - tf.nn.sigmoid(vector(ip3 / 255.0)) * 255.0
print('4')
reader = load_model('./nets/reader.net')
features = reader(ip3 / 255.0)
print('5')
head = load_model('./nets/head.net')
feed = [1 - ip1 / 255.0, (ip4[:, :, :, 0:3] / 127.5 - 1) * ip4[:, :, :, 3:4] / 255.0]
for _ in range(len(features)):
feed.append(keras.backend.mean(features[_], axis=[1, 2]))
nil0, nil1, head_temp = head(feed)
print('6')
neck = load_model('./nets/neck.net')
nil2, nil3, neck_temp = neck(feed)
feed[0] = tf.clip_by_value(1 - tf.image.resize_bilinear(ToGray(VGG2RGB(head_temp) / 255.0), tf.shape(ip1)[1:3]), 0.0, 1.0)
nil4, nil5, head_temp = neck(feed)
head_op = VGG2RGB(head_temp)
neck_op = VGG2RGB(neck_temp)
print('7')
inception = load_model('./nets/inception.net')
features_render = inception((ip3 + (downsample(ip1) - blur(downsample(ip1))) * 2.0) / 255.0)
precessed_feed = [(ip4[:, :, :, 0:3] / 127.5 - 1) * ip4[:, :, :, 3:4] / 255.0] + [
norm_feature(item, features_render[-1]) for item in features_render]
print('8')
render_head = load_model('./nets/render_head.net')
render_neck = load_model('./nets/render_neck.net')
nil6, nil7, render_A = render_head([1 - ip1 / 255.0] + precessed_feed)
nil8, nil9, render_B = render_neck(
[1 - tf.image.resize_bilinear(ToGray(nts(render_A)), tf.shape(ip1)[1:3])] + precessed_feed)
render_op = nts(render_B) * 255.0
print('9')
tail = load_model('./nets/tail.net')
pads = 7
tail_op = tail(tf.pad(ip3 / 255.0, [[0, 0], [pads, pads], [pads, pads], [0, 0]], 'REFLECT'))[:, pads * 2:-pads * 2, pads * 2:-pads * 2, :][:, 1:-1, 1:-1, :] * 255.0
print('10')
vgg7 = load_model('./nets/vgg7.net')
pads = 7
vgg7_op = vgg7(tf.pad(ip1 / 255.0, [[0, 0], [pads, pads], [pads, pads], [0, 0]], 'REFLECT'))[:, pads:-pads, pads:-pads, :] * 255.0
print('11')
mat = make_unet512()
mat_op = mat(ip3 / 255.0) * 255.0
print('11')
norm = load_model('./nets/norm.net')
norm_op = norm(ip1 / 255.0) * 255.0
print('12')
session.run(tf.global_variables_initializer())
print('begin load')
tail.load_weights('./nets/tail.net')
vgg7.load_weights('./nets/vgg7.net')
head.load_weights('./nets/head.net')
neck.load_weights('./nets/neck.net')
reader.load_weights('./nets/reader.net')
vector.load_weights('./nets/vector.net')
render_head.load_weights('./nets/render_head.net')
render_neck.load_weights('./nets/render_neck.net')
inception.load_weights('./nets/inception.net')
mat.load_weights('./nets/mat.net')
norm.load_weights('./nets/norm.net')
def go_head(sketch, global_hint, local_hint):
return session.run(head_op, feed_dict={
ip1: sketch[None, :, :, None], ip3: global_hint[None, :, :, :], ip4: local_hint[None, :, :, :]
})[0].clip(0, 255).astype(np.uint8)
def go_render(sketch, segmentation, points):
return session.run(render_op, feed_dict={
ip1: sketch[None, :, :, None], ip3: segmentation[None, :, :, :], ip4: points[None, :, :, :]
})[0].clip(0, 255).astype(np.uint8)
def go_tail(x):
return session.run(tail_op, feed_dict={
ip3: x[None, :, :, :]
})[0].clip(0, 255).astype(np.uint8)
def go_vgg7(x):
return session.run(vgg7_op, feed_dict={
ip1: x[None, :, :, None]
})[0, :, :, 0].clip(0, 255).astype(np.uint8)
def go_vector(x):
return session.run(vector_op, feed_dict={
ip3: x[None, :, :, :]
})[0].clip(0, 255).astype(np.uint8)
def go_mat(x):
return session.run(mat_op, feed_dict={
ip3: x[None, :, :, :]
})[0, :, :, 0].clip(0, 255).astype(np.uint8)
def go_norm(x):
return session.run(norm_op, feed_dict={
ip1: x[None, :, :, None]
})[0].clip(0, 255).astype(np.uint8)
|