File size: 5,568 Bytes
e9d4572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import tensorflow

tensorflow.compat.v1.disable_v2_behavior()
tf = tensorflow.compat.v1

import keras
import numpy as np
from config import *
from keras.models import load_model
from smoother import *
import keras.backend as K
from models import *


def ToGray(x):
    R = x[:, :, :, 0:1]
    G = x[:, :, :, 1:2]
    B = x[:, :, :, 2:3]
    return 0.30 * R + 0.59 * G + 0.11 * B


def RGB2YUV(x):
    R = x[:, :, :, 0:1]
    G = x[:, :, :, 1:2]
    B = x[:, :, :, 2:3]
    Y = 0.299 * R + 0.587 * G + 0.114 * B
    U = 0.492 * (B - Y) + 128
    V = 0.877 * (R - Y) + 128
    return tf.concat([Y, U, V], axis=3)


def YUV2RGB(x):
    Y = x[:, :, :, 0:1]
    U = x[:, :, :, 1:2]
    V = x[:, :, :, 2:3]
    R = Y + 1.140 * (V - 128)
    G = Y - 0.394 * (U - 128) - 0.581 * (V - 128)
    B = Y + 2.032 * (U - 128)
    return tf.concat([R, G, B], axis=3)


def VGG2RGB(x):
    return (x + [103.939, 116.779, 123.68])[:, :, :, ::-1]


def blur(x):
    return Smoother({'data': tf.pad(x, [[0, 0], [9, 9], [9, 9], [0, 0]], 'SYMMETRIC')}, 7, 2).get_output()[:, 9: -9, 9: -9, :]


def norm_feature(x, core):
    cs0 = tf.shape(core)[1]
    cs1 = tf.shape(core)[2]
    small = tf.image.resize_area(x, (cs0, cs1))
    avged = tf.nn.avg_pool(tf.pad(small, [[0, 0], [2, 2], [2, 2], [0, 0]], 'REFLECT'), [1, 5, 5, 1], [1, 1, 1, 1], 'VALID')
    return tf.image.resize_bicubic(avged, tf.shape(x)[1:3])


def upsample(x):
    return K.resize_images(x, 2, 2, 'channels_last')


def downsample(x):
    return tf.nn.avg_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')


def nts(x):
    return (x + [103.939, 116.779, 123.68])[:, :, :, ::-1] / 255.0


session = keras.backend.get_session()

ip1 = tf.placeholder(dtype=tf.float32, shape=(None, None, None, 1))
ip3 = tf.placeholder(dtype=tf.float32, shape=(None, None, None, 3))
ip4 = tf.placeholder(dtype=tf.float32, shape=(None, None, None, 4))

print('1')

vector = make_diff_net()
vector_op = 255.0 - tf.nn.sigmoid(vector(ip3 / 255.0)) * 255.0

print('4')

reader = load_model('./nets/reader.net')
features = reader(ip3 / 255.0)

print('5')

head = load_model('./nets/head.net')
feed = [1 - ip1 / 255.0, (ip4[:, :, :, 0:3] / 127.5 - 1) * ip4[:, :, :, 3:4] / 255.0]
for _ in range(len(features)):
    feed.append(keras.backend.mean(features[_], axis=[1, 2]))
nil0, nil1, head_temp = head(feed)

print('6')

neck = load_model('./nets/neck.net')
nil2, nil3, neck_temp = neck(feed)
feed[0] = tf.clip_by_value(1 - tf.image.resize_bilinear(ToGray(VGG2RGB(head_temp) / 255.0), tf.shape(ip1)[1:3]), 0.0, 1.0)
nil4, nil5, head_temp = neck(feed)
head_op = VGG2RGB(head_temp)
neck_op = VGG2RGB(neck_temp)

print('7')

inception = load_model('./nets/inception.net')
features_render = inception((ip3 + (downsample(ip1) - blur(downsample(ip1))) * 2.0) / 255.0)
precessed_feed = [(ip4[:, :, :, 0:3] / 127.5 - 1) * ip4[:, :, :, 3:4] / 255.0] + [
    norm_feature(item, features_render[-1]) for item in features_render]

print('8')

render_head = load_model('./nets/render_head.net')
render_neck = load_model('./nets/render_neck.net')
nil6, nil7, render_A = render_head([1 - ip1 / 255.0] + precessed_feed)
nil8, nil9, render_B = render_neck(
    [1 - tf.image.resize_bilinear(ToGray(nts(render_A)), tf.shape(ip1)[1:3])] + precessed_feed)
render_op = nts(render_B) * 255.0

print('9')

tail = load_model('./nets/tail.net')
pads = 7
tail_op = tail(tf.pad(ip3 / 255.0, [[0, 0], [pads, pads], [pads, pads], [0, 0]], 'REFLECT'))[:, pads * 2:-pads * 2, pads * 2:-pads * 2, :][:, 1:-1, 1:-1, :] * 255.0

print('10')


vgg7 = load_model('./nets/vgg7.net')
pads = 7
vgg7_op = vgg7(tf.pad(ip1 / 255.0, [[0, 0], [pads, pads], [pads, pads], [0, 0]], 'REFLECT'))[:, pads:-pads, pads:-pads, :] * 255.0

print('11')


mat = make_unet512()
mat_op = mat(ip3 / 255.0) * 255.0

print('11')

norm = load_model('./nets/norm.net')
norm_op = norm(ip1 / 255.0) * 255.0

print('12')

session.run(tf.global_variables_initializer())

print('begin load')


tail.load_weights('./nets/tail.net')
vgg7.load_weights('./nets/vgg7.net')
head.load_weights('./nets/head.net')
neck.load_weights('./nets/neck.net')
reader.load_weights('./nets/reader.net')
vector.load_weights('./nets/vector.net')
render_head.load_weights('./nets/render_head.net')
render_neck.load_weights('./nets/render_neck.net')
inception.load_weights('./nets/inception.net')
mat.load_weights('./nets/mat.net')
norm.load_weights('./nets/norm.net')


def go_head(sketch, global_hint, local_hint):
    return session.run(head_op, feed_dict={
        ip1: sketch[None, :, :, None], ip3: global_hint[None, :, :, :], ip4: local_hint[None, :, :, :]
    })[0].clip(0, 255).astype(np.uint8)


def go_render(sketch, segmentation, points):
    return session.run(render_op, feed_dict={
        ip1: sketch[None, :, :, None], ip3: segmentation[None, :, :, :], ip4: points[None, :, :, :]
    })[0].clip(0, 255).astype(np.uint8)


def go_tail(x):
    return session.run(tail_op, feed_dict={
        ip3: x[None, :, :, :]
    })[0].clip(0, 255).astype(np.uint8)


def go_vgg7(x):
    return session.run(vgg7_op, feed_dict={
        ip1: x[None, :, :, None]
    })[0, :, :, 0].clip(0, 255).astype(np.uint8)


def go_vector(x):
    return session.run(vector_op, feed_dict={
        ip3: x[None, :, :, :]
    })[0].clip(0, 255).astype(np.uint8)


def go_mat(x):
    return session.run(mat_op, feed_dict={
        ip3: x[None, :, :, :]
    })[0, :, :, 0].clip(0, 255).astype(np.uint8)


def go_norm(x):
    return session.run(norm_op, feed_dict={
        ip1: x[None, :, :, None]
    })[0].clip(0, 255).astype(np.uint8)