|
|
|
""" |
|
Created on Mon Apr 24 15:43:29 2017 |
|
@author: zhaoy |
|
""" |
|
""" |
|
@Modified by yangxy ([email protected]) |
|
""" |
|
import cv2 |
|
import numpy as np |
|
from skimage import transform as trans |
|
|
|
|
|
REFERENCE_FACIAL_POINTS = [ |
|
[30.29459953, 51.69630051], |
|
[65.53179932, 51.50139999], |
|
[48.02519989, 71.73660278], |
|
[33.54930115, 92.3655014], |
|
[62.72990036, 92.20410156] |
|
] |
|
|
|
DEFAULT_CROP_SIZE = (96, 112) |
|
|
|
|
|
def _umeyama(src, dst, estimate_scale=True, scale=1.0): |
|
"""Estimate N-D similarity transformation with or without scaling. |
|
Parameters |
|
---------- |
|
src : (M, N) array |
|
Source coordinates. |
|
dst : (M, N) array |
|
Destination coordinates. |
|
estimate_scale : bool |
|
Whether to estimate scaling factor. |
|
Returns |
|
------- |
|
T : (N + 1, N + 1) |
|
The homogeneous similarity transformation matrix. The matrix contains |
|
NaN values only if the problem is not well-conditioned. |
|
References |
|
---------- |
|
.. [1] "Least-squares estimation of transformation parameters between two |
|
point patterns", Shinji Umeyama, PAMI 1991, :DOI:`10.1109/34.88573` |
|
""" |
|
|
|
num = src.shape[0] |
|
dim = src.shape[1] |
|
|
|
|
|
src_mean = src.mean(axis=0) |
|
dst_mean = dst.mean(axis=0) |
|
|
|
|
|
src_demean = src - src_mean |
|
dst_demean = dst - dst_mean |
|
|
|
|
|
A = dst_demean.T @ src_demean / num |
|
|
|
|
|
d = np.ones((dim,), dtype=np.double) |
|
if np.linalg.det(A) < 0: |
|
d[dim - 1] = -1 |
|
|
|
T = np.eye(dim + 1, dtype=np.double) |
|
|
|
U, S, V = np.linalg.svd(A) |
|
|
|
|
|
rank = np.linalg.matrix_rank(A) |
|
if rank == 0: |
|
return np.nan * T |
|
elif rank == dim - 1: |
|
if np.linalg.det(U) * np.linalg.det(V) > 0: |
|
T[:dim, :dim] = U @ V |
|
else: |
|
s = d[dim - 1] |
|
d[dim - 1] = -1 |
|
T[:dim, :dim] = U @ np.diag(d) @ V |
|
d[dim - 1] = s |
|
else: |
|
T[:dim, :dim] = U @ np.diag(d) @ V |
|
|
|
if estimate_scale: |
|
|
|
scale = 1.0 / src_demean.var(axis=0).sum() * (S @ d) |
|
else: |
|
scale = scale |
|
|
|
T[:dim, dim] = dst_mean - scale * (T[:dim, :dim] @ src_mean.T) |
|
T[:dim, :dim] *= scale |
|
|
|
return T, scale |
|
|
|
|
|
class FaceWarpException(Exception): |
|
def __str__(self): |
|
return 'In File {}:{}'.format( |
|
__file__, super.__str__(self)) |
|
|
|
|
|
def get_reference_facial_points(output_size=None, |
|
inner_padding_factor=0.0, |
|
outer_padding=(0, 0), |
|
default_square=False): |
|
tmp_5pts = np.array(REFERENCE_FACIAL_POINTS) |
|
tmp_crop_size = np.array(DEFAULT_CROP_SIZE) |
|
|
|
|
|
if default_square: |
|
size_diff = max(tmp_crop_size) - tmp_crop_size |
|
tmp_5pts += size_diff / 2 |
|
tmp_crop_size += size_diff |
|
|
|
if (output_size and |
|
output_size[0] == tmp_crop_size[0] and |
|
output_size[1] == tmp_crop_size[1]): |
|
print('output_size == DEFAULT_CROP_SIZE {}: return default reference points'.format(tmp_crop_size)) |
|
return tmp_5pts |
|
|
|
if (inner_padding_factor == 0 and |
|
outer_padding == (0, 0)): |
|
if output_size==None: |
|
print('No paddings to do: return default reference points') |
|
return tmp_5pts |
|
else: |
|
raise FaceWarpException( |
|
'No paddings to do, output_size must be None or {}'.format(tmp_crop_size)) |
|
|
|
|
|
if not (0 <= inner_padding_factor <= 1.0): |
|
raise FaceWarpException('Not (0 <= inner_padding_factor <= 1.0)') |
|
|
|
if ((inner_padding_factor > 0 or outer_padding[0] > 0 or outer_padding[1] > 0) |
|
and output_size==None): |
|
output_size = tmp_crop_size * \ |
|
(1 + inner_padding_factor * 2).astype(np.int32) |
|
output_size += np.array(outer_padding) |
|
print(' deduced from paddings, output_size = ', output_size) |
|
|
|
if not (outer_padding[0] < output_size[0] |
|
and outer_padding[1] < output_size[1]): |
|
raise FaceWarpException('Not (outer_padding[0] < output_size[0]' |
|
'and outer_padding[1] < output_size[1])') |
|
|
|
|
|
|
|
if inner_padding_factor > 0: |
|
size_diff = tmp_crop_size * inner_padding_factor * 2 |
|
tmp_5pts += size_diff / 2 |
|
tmp_crop_size += np.round(size_diff).astype(np.int32) |
|
|
|
|
|
|
|
|
|
|
|
|
|
size_bf_outer_pad = np.array(output_size) - np.array(outer_padding) * 2 |
|
|
|
|
|
|
|
if size_bf_outer_pad[0] * tmp_crop_size[1] != size_bf_outer_pad[1] * tmp_crop_size[0]: |
|
raise FaceWarpException('Must have (output_size - outer_padding)' |
|
'= some_scale * (crop_size * (1.0 + inner_padding_factor)') |
|
|
|
scale_factor = size_bf_outer_pad[0].astype(np.float32) / tmp_crop_size[0] |
|
|
|
tmp_5pts = tmp_5pts * scale_factor |
|
|
|
|
|
tmp_crop_size = size_bf_outer_pad |
|
|
|
|
|
|
|
|
|
reference_5point = tmp_5pts + np.array(outer_padding) |
|
tmp_crop_size = output_size |
|
|
|
|
|
|
|
|
|
|
|
|
|
return reference_5point |
|
|
|
|
|
def get_affine_transform_matrix(src_pts, dst_pts): |
|
tfm = np.float32([[1, 0, 0], [0, 1, 0]]) |
|
n_pts = src_pts.shape[0] |
|
ones = np.ones((n_pts, 1), src_pts.dtype) |
|
src_pts_ = np.hstack([src_pts, ones]) |
|
dst_pts_ = np.hstack([dst_pts, ones]) |
|
|
|
A, res, rank, s = np.linalg.lstsq(src_pts_, dst_pts_) |
|
|
|
if rank == 3: |
|
tfm = np.float32([ |
|
[A[0, 0], A[1, 0], A[2, 0]], |
|
[A[0, 1], A[1, 1], A[2, 1]] |
|
]) |
|
elif rank == 2: |
|
tfm = np.float32([ |
|
[A[0, 0], A[1, 0], 0], |
|
[A[0, 1], A[1, 1], 0] |
|
]) |
|
|
|
return tfm |
|
|
|
|
|
def warp_and_crop_face(src_img, |
|
facial_pts, |
|
reference_pts=None, |
|
crop_size=(96, 112), |
|
align_type='smilarity'): |
|
if reference_pts is None: |
|
if crop_size[0] == 96 and crop_size[1] == 112: |
|
reference_pts = REFERENCE_FACIAL_POINTS |
|
else: |
|
default_square = False |
|
inner_padding_factor = 0 |
|
outer_padding = (0, 0) |
|
output_size = crop_size |
|
|
|
reference_pts = get_reference_facial_points(output_size, |
|
inner_padding_factor, |
|
outer_padding, |
|
default_square) |
|
|
|
ref_pts = np.float32(reference_pts) |
|
ref_pts_shp = ref_pts.shape |
|
if max(ref_pts_shp) < 3 or min(ref_pts_shp) != 2: |
|
raise FaceWarpException( |
|
'reference_pts.shape must be (K,2) or (2,K) and K>2') |
|
|
|
if ref_pts_shp[0] == 2: |
|
ref_pts = ref_pts.T |
|
|
|
src_pts = np.float32(facial_pts) |
|
src_pts_shp = src_pts.shape |
|
if max(src_pts_shp) < 3 or min(src_pts_shp) != 2: |
|
raise FaceWarpException( |
|
'facial_pts.shape must be (K,2) or (2,K) and K>2') |
|
|
|
if src_pts_shp[0] == 2: |
|
src_pts = src_pts.T |
|
|
|
if src_pts.shape != ref_pts.shape: |
|
raise FaceWarpException( |
|
'facial_pts and reference_pts must have the same shape') |
|
|
|
if align_type=='cv2_affine': |
|
tfm = cv2.getAffineTransform(src_pts[0:3], ref_pts[0:3]) |
|
tfm_inv = cv2.getAffineTransform(ref_pts[0:3], src_pts[0:3]) |
|
elif align_type=='affine': |
|
tfm = get_affine_transform_matrix(src_pts, ref_pts) |
|
tfm_inv = get_affine_transform_matrix(ref_pts, src_pts) |
|
else: |
|
params, scale = _umeyama(src_pts, ref_pts) |
|
tfm = params[:2, :] |
|
|
|
params, _ = _umeyama(ref_pts, src_pts, False, scale=1.0/scale) |
|
tfm_inv = params[:2, :] |
|
|
|
face_img = cv2.warpAffine(src_img, tfm, (crop_size[0], crop_size[1]), flags=3) |
|
|
|
return face_img, tfm_inv |