Spaces:
Runtime error
Runtime error
thinh-huynh-re
commited on
Commit
•
e94e369
1
Parent(s):
1bcf2a0
Update
Browse files- stream.py +181 -0
- utils/frame_rate.py +5 -3
stream.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from streamlit_webrtc import webrtc_streamer
|
2 |
+
import numpy as np
|
3 |
+
import streamlit as st
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import av
|
7 |
+
import threading
|
8 |
+
|
9 |
+
import multiprocessing
|
10 |
+
from typing import List, Optional, Tuple
|
11 |
+
|
12 |
+
from pandas import DataFrame
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
import pandas as pd
|
16 |
+
import streamlit as st
|
17 |
+
import torch
|
18 |
+
from torch import Tensor
|
19 |
+
from transformers import AutoFeatureExtractor, TimesformerForVideoClassification
|
20 |
+
|
21 |
+
|
22 |
+
from utils.frame_rate import FrameRate
|
23 |
+
|
24 |
+
np.random.seed(0)
|
25 |
+
|
26 |
+
st.set_page_config(
|
27 |
+
page_title="TimeSFormer",
|
28 |
+
page_icon="🧊",
|
29 |
+
layout="wide",
|
30 |
+
initial_sidebar_state="expanded",
|
31 |
+
menu_items={
|
32 |
+
"Get Help": "https://www.extremelycoolapp.com/help",
|
33 |
+
"Report a bug": "https://www.extremelycoolapp.com/bug",
|
34 |
+
"About": "# This is a header. This is an *extremely* cool app!",
|
35 |
+
},
|
36 |
+
)
|
37 |
+
|
38 |
+
|
39 |
+
@st.cache_resource
|
40 |
+
# @st.experimental_singleton
|
41 |
+
def load_model(model_name: str):
|
42 |
+
if "base-finetuned-k400" in model_name or "base-finetuned-k600" in model_name:
|
43 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
44 |
+
"MCG-NJU/videomae-base-finetuned-kinetics"
|
45 |
+
)
|
46 |
+
else:
|
47 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
48 |
+
model = TimesformerForVideoClassification.from_pretrained(model_name)
|
49 |
+
return feature_extractor, model
|
50 |
+
|
51 |
+
|
52 |
+
lock = threading.Lock()
|
53 |
+
|
54 |
+
rtc_configuration = {
|
55 |
+
"iceServers": [
|
56 |
+
{
|
57 |
+
"urls": "turn:relay1.expressturn.com:3478",
|
58 |
+
"username": "efBRTY571ATWBRMP36",
|
59 |
+
"credential": "pGcX1BPH5fMmZJc5",
|
60 |
+
},
|
61 |
+
# {
|
62 |
+
# "urls": [
|
63 |
+
# "stun:stun1.l.google.com:19302",
|
64 |
+
# "stun:stun2.l.google.com:19302",
|
65 |
+
# "stun:stun3.l.google.com:19302",
|
66 |
+
# "stun:stun4.l.google.com:19302",
|
67 |
+
# ]
|
68 |
+
# },
|
69 |
+
],
|
70 |
+
}
|
71 |
+
|
72 |
+
|
73 |
+
def inference():
|
74 |
+
if not img_container.ready:
|
75 |
+
return
|
76 |
+
|
77 |
+
inputs = feature_extractor(list(img_container.imgs), return_tensors="pt")
|
78 |
+
|
79 |
+
with torch.no_grad():
|
80 |
+
outputs = model(**inputs)
|
81 |
+
logits: Tensor = outputs.logits
|
82 |
+
|
83 |
+
# model predicts one of the 400 Kinetics-400 classes
|
84 |
+
max_index = logits.argmax(-1).item()
|
85 |
+
predicted_label = model.config.id2label[max_index]
|
86 |
+
|
87 |
+
img_container.frame_rate.label = f"{predicted_label}_{logits[0][max_index]:.2f}%"
|
88 |
+
|
89 |
+
TOP_K = 12
|
90 |
+
# logits = np.squeeze(logits)
|
91 |
+
logits = logits.squeeze().numpy()
|
92 |
+
indices = np.argsort(logits)[::-1][:TOP_K]
|
93 |
+
values = logits[indices]
|
94 |
+
|
95 |
+
results: List[Tuple[str, float]] = []
|
96 |
+
for index, value in zip(indices, values):
|
97 |
+
predicted_label = model.config.id2label[index]
|
98 |
+
# print(f"Label: {predicted_label} - {value:.2f}%")
|
99 |
+
results.append((predicted_label, value))
|
100 |
+
|
101 |
+
img_container.rs = pd.DataFrame(results, columns=("Label", "Confidence"))
|
102 |
+
|
103 |
+
|
104 |
+
class ImgContainer:
|
105 |
+
def __init__(self, frames_per_video: int = 8) -> None:
|
106 |
+
self.img: Optional[np.ndarray] = None # raw image
|
107 |
+
self.frame_rate: FrameRate = FrameRate()
|
108 |
+
self.imgs: List[np.ndarray] = []
|
109 |
+
self.frame_rate.reset()
|
110 |
+
self.frames_per_video = frames_per_video
|
111 |
+
self.rs: Optional[DataFrame] = None
|
112 |
+
|
113 |
+
def add_frame(self, frame: np.ndarray):
|
114 |
+
if len(img_container.imgs) >= frames_per_video:
|
115 |
+
self.imgs.pop(0)
|
116 |
+
self.imgs.append(frame)
|
117 |
+
|
118 |
+
@property
|
119 |
+
def ready(self):
|
120 |
+
return len(img_container.imgs) == self.frames_per_video
|
121 |
+
|
122 |
+
|
123 |
+
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
|
124 |
+
img = frame.to_ndarray(format="bgr24")
|
125 |
+
with lock:
|
126 |
+
img_container.img = img
|
127 |
+
img_container.frame_rate.count()
|
128 |
+
img_container.add_frame(img)
|
129 |
+
inference()
|
130 |
+
img = img_container.frame_rate.show_fps(img)
|
131 |
+
|
132 |
+
return av.VideoFrame.from_ndarray(img, format="bgr24")
|
133 |
+
|
134 |
+
|
135 |
+
def get_frames_per_video(model_name: str) -> int:
|
136 |
+
if "base-finetuned" in model_name:
|
137 |
+
return 8
|
138 |
+
elif "hr-finetuned" in model_name:
|
139 |
+
return 16
|
140 |
+
else:
|
141 |
+
return 96
|
142 |
+
|
143 |
+
|
144 |
+
st.title("TimeSFormer")
|
145 |
+
|
146 |
+
with st.expander("INTRODUCTION"):
|
147 |
+
st.text(
|
148 |
+
f"""Streamlit demo for TimeSFormer.
|
149 |
+
Number of CPU(s): {multiprocessing.cpu_count()}
|
150 |
+
"""
|
151 |
+
)
|
152 |
+
|
153 |
+
model_name = st.selectbox(
|
154 |
+
"model_name",
|
155 |
+
(
|
156 |
+
"facebook/timesformer-base-finetuned-k400",
|
157 |
+
"facebook/timesformer-base-finetuned-k600",
|
158 |
+
"facebook/timesformer-base-finetuned-ssv2",
|
159 |
+
"facebook/timesformer-hr-finetuned-k600",
|
160 |
+
"facebook/timesformer-hr-finetuned-k400",
|
161 |
+
"facebook/timesformer-hr-finetuned-ssv2",
|
162 |
+
"fcakyon/timesformer-large-finetuned-k400",
|
163 |
+
"fcakyon/timesformer-large-finetuned-k600",
|
164 |
+
),
|
165 |
+
)
|
166 |
+
feature_extractor, model = load_model(model_name)
|
167 |
+
|
168 |
+
|
169 |
+
frames_per_video = get_frames_per_video(model_name)
|
170 |
+
st.info(f"Frames per video: {frames_per_video}")
|
171 |
+
|
172 |
+
img_container = ImgContainer(frames_per_video)
|
173 |
+
|
174 |
+
ctx = st.session_state.ctx = webrtc_streamer(
|
175 |
+
key="snapshot",
|
176 |
+
video_frame_callback=video_frame_callback,
|
177 |
+
rtc_configuration=rtc_configuration,
|
178 |
+
)
|
179 |
+
|
180 |
+
if img_container.rs is not None:
|
181 |
+
st.dataframe(img_container.rs)
|
utils/frame_rate.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import numpy as np
|
2 |
import time, cv2
|
3 |
|
@@ -5,9 +6,10 @@ import time, cv2
|
|
5 |
class FrameRate:
|
6 |
def __init__(self) -> None:
|
7 |
self.c: int = 0
|
8 |
-
self.start_time: float = None
|
9 |
-
self.NO_FRAMES =
|
10 |
self.fps: float = -1
|
|
|
11 |
|
12 |
def reset(self) -> None:
|
13 |
self.start_time = time.time()
|
@@ -26,7 +28,7 @@ class FrameRate:
|
|
26 |
if self.fps != -1:
|
27 |
return cv2.putText(
|
28 |
image,
|
29 |
-
f"FPS {self.fps:.0f}",
|
30 |
(50, 50),
|
31 |
cv2.FONT_HERSHEY_SIMPLEX,
|
32 |
fontScale=1,
|
|
|
1 |
+
from typing import Optional
|
2 |
import numpy as np
|
3 |
import time, cv2
|
4 |
|
|
|
6 |
class FrameRate:
|
7 |
def __init__(self) -> None:
|
8 |
self.c: int = 0
|
9 |
+
self.start_time: Optional[float] = None
|
10 |
+
self.NO_FRAMES = 10
|
11 |
self.fps: float = -1
|
12 |
+
self.label: str = ""
|
13 |
|
14 |
def reset(self) -> None:
|
15 |
self.start_time = time.time()
|
|
|
28 |
if self.fps != -1:
|
29 |
return cv2.putText(
|
30 |
image,
|
31 |
+
f"FPS {self.fps:.0f} _ {self.label}",
|
32 |
(50, 50),
|
33 |
cv2.FONT_HERSHEY_SIMPLEX,
|
34 |
fontScale=1,
|