thinh-huynh-re commited on
Commit
e00e6d6
1 Parent(s): a3844a2
Files changed (2) hide show
  1. .gitignore +2 -1
  2. run_opencv.py +12 -4
.gitignore CHANGED
@@ -4,4 +4,5 @@ tmp/*
4
  !tmp/.gitkeep
5
  *.mp4
6
  .DS_Store
7
- diary.csv
 
 
4
  !tmp/.gitkeep
5
  *.mp4
6
  .DS_Store
7
+ diary.csv
8
+ diary.xlsx
run_opencv.py CHANGED
@@ -1,5 +1,6 @@
1
  import json
2
  from datetime import datetime
 
3
  from typing import List, Optional, Tuple
4
 
5
  import cv2
@@ -50,11 +51,16 @@ class ActivityModel:
50
 
51
  self.load_json()
52
 
53
- self.diary: List[Tuple[str, str, float]] = [] # [time, activity, confidence]
 
 
54
 
55
  def save_diary(self):
56
- df = pd.DataFrame(self.diary, columns=["time", "activity", "confidence"])
 
 
57
  df.to_csv("diary.csv")
 
58
 
59
  def load_json(self):
60
  if args.id2label is not None:
@@ -93,13 +99,15 @@ class ActivityModel:
93
  return
94
  predicted_label = self.model.config.id2label[max_index]
95
 
96
- confidence = logits[0][max_index]
97
 
98
  if (self.args.threshold is None) or (
99
  self.args.threshold is not None and confidence >= self.args.threshold
100
  ):
101
  img_container.frame_rate.label = f"{predicted_label}_{confidence:.2f}%"
102
- self.diary.append((str(datetime.now()), predicted_label, confidence))
 
 
103
 
104
  # logits = np.squeeze(logits)
105
  # logits = logits.squeeze().numpy()
 
1
  import json
2
  from datetime import datetime
3
+ from time import time
4
  from typing import List, Optional, Tuple
5
 
6
  import cv2
 
51
 
52
  self.load_json()
53
 
54
+ self.diary: List[
55
+ Tuple[str, int, str, float]
56
+ ] = [] # [time, activity, confidence]
57
 
58
  def save_diary(self):
59
+ df = pd.DataFrame(
60
+ self.diary, columns=["time", "timestamp", "activity", "confidence"]
61
+ )
62
  df.to_csv("diary.csv")
63
+ df.to_excel("diary.xlsx")
64
 
65
  def load_json(self):
66
  if args.id2label is not None:
 
99
  return
100
  predicted_label = self.model.config.id2label[max_index]
101
 
102
+ confidence = logits[0][max_index].item()
103
 
104
  if (self.args.threshold is None) or (
105
  self.args.threshold is not None and confidence >= self.args.threshold
106
  ):
107
  img_container.frame_rate.label = f"{predicted_label}_{confidence:.2f}%"
108
+ self.diary.append(
109
+ (str(datetime.now()), int(time()), predicted_label, confidence)
110
+ )
111
 
112
  # logits = np.squeeze(logits)
113
  # logits = logits.squeeze().numpy()