Spaces:
Runtime error
Runtime error
thinh-huynh-re
commited on
Commit
•
1def0a4
1
Parent(s):
6b89aad
Refactor
Browse files- requirements.txt +1 -0
- run_opencv.py +106 -92
requirements.txt
CHANGED
@@ -6,3 +6,4 @@ black
|
|
6 |
opencv-python
|
7 |
opencv-python-headless
|
8 |
streamlit-webrtc
|
|
|
|
6 |
opencv-python
|
7 |
opencv-python-headless
|
8 |
streamlit-webrtc
|
9 |
+
typed-argument-parser
|
run_opencv.py
CHANGED
@@ -1,134 +1,148 @@
|
|
1 |
-
from typing import List, Tuple
|
2 |
|
3 |
import cv2
|
4 |
import numpy as np
|
5 |
import pandas as pd
|
6 |
import torch
|
|
|
7 |
from torch import Tensor
|
8 |
from transformers import AutoFeatureExtractor, TimesformerForVideoClassification
|
9 |
|
10 |
from utils.img_container import ImgContainer
|
11 |
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
22 |
|
|
|
23 |
|
24 |
-
def inference():
|
25 |
-
if not img_container.ready:
|
26 |
-
return
|
27 |
|
28 |
-
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
logits: Tensor = outputs.logits
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
img_container
|
|
|
|
|
39 |
|
40 |
-
|
41 |
-
# logits = np.squeeze(logits)
|
42 |
-
logits = logits.squeeze().numpy()
|
43 |
-
indices = np.argsort(logits)[::-1][:TOP_K]
|
44 |
-
values = logits[indices]
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
# print(f"Label: {predicted_label} - {value:.2f}%")
|
50 |
-
results.append((predicted_label, value))
|
51 |
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
else:
|
61 |
-
return 96
|
62 |
|
|
|
63 |
|
64 |
-
model_name
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
# "fcakyon/timesformer-large-finetuned-k400",
|
72 |
-
# "fcakyon/timesformer-large-finetuned-k600",
|
73 |
-
feature_extractor, model = load_model(model_name)
|
74 |
|
75 |
|
76 |
-
|
77 |
-
|
|
|
78 |
|
79 |
-
|
80 |
|
81 |
-
|
|
|
82 |
|
83 |
-
|
|
|
|
|
84 |
|
85 |
-
|
86 |
-
|
|
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
size = (frame_width, frame_height)
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
95 |
|
96 |
-
|
97 |
-
print("Error reading video file")
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
# by frame
|
102 |
-
ret, frame = camera.read()
|
103 |
|
104 |
-
|
|
|
|
|
|
|
105 |
|
106 |
-
|
107 |
-
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
# inference()
|
112 |
-
rs = img_container.frame_rate.show_fps(frame, img_container.is_recording)
|
113 |
|
114 |
-
|
115 |
-
|
|
|
|
|
116 |
|
117 |
-
|
118 |
-
|
|
|
|
|
119 |
|
120 |
-
# the
|
121 |
-
|
122 |
-
|
123 |
-
|
|
|
124 |
|
125 |
-
if k == ord("q"):
|
126 |
-
break
|
127 |
-
elif k == ord("r"):
|
128 |
-
img_container.toggle_recording()
|
129 |
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
# Destroy all the windows
|
134 |
-
cv2.destroyAllWindows()
|
|
|
1 |
+
from typing import List, Optional, Tuple
|
2 |
|
3 |
import cv2
|
4 |
import numpy as np
|
5 |
import pandas as pd
|
6 |
import torch
|
7 |
+
from tap import Tap
|
8 |
from torch import Tensor
|
9 |
from transformers import AutoFeatureExtractor, TimesformerForVideoClassification
|
10 |
|
11 |
from utils.img_container import ImgContainer
|
12 |
|
13 |
|
14 |
+
class ArgParser(Tap):
|
15 |
+
is_recording: Optional[bool] = False
|
16 |
+
|
17 |
+
# "facebook/timesformer-base-finetuned-k400"
|
18 |
+
# "facebook/timesformer-base-finetuned-k600",
|
19 |
+
# "facebook/timesformer-base-finetuned-ssv2",
|
20 |
+
# "facebook/timesformer-hr-finetuned-k600",
|
21 |
+
# "facebook/timesformer-hr-finetuned-k400",
|
22 |
+
# "facebook/timesformer-hr-finetuned-ssv2",
|
23 |
+
# "fcakyon/timesformer-large-finetuned-k400",
|
24 |
+
# "fcakyon/timesformer-large-finetuned-k600",
|
25 |
+
model_name: Optional[str] = "facebook/timesformer-base-finetuned-k400"
|
26 |
|
27 |
+
num_skip_frames: Optional[int] = 4
|
28 |
|
|
|
|
|
|
|
29 |
|
30 |
+
class ActivityModel:
|
31 |
+
def __init__(self, args: ArgParser):
|
32 |
+
self.feature_extractor, self.model = self.load_model(args.model_name)
|
33 |
|
34 |
+
self.frames_per_video = self.get_frames_per_video(args.model_name)
|
35 |
+
print(f"Frames per video: {self.frames_per_video}")
|
|
|
36 |
|
37 |
+
def load_model(self, model_name: str):
|
38 |
+
if "base-finetuned-k400" in model_name or "base-finetuned-k600" in model_name:
|
39 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
40 |
+
"MCG-NJU/videomae-base-finetuned-kinetics"
|
41 |
+
)
|
42 |
+
else:
|
43 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
44 |
+
model = TimesformerForVideoClassification.from_pretrained(model_name)
|
45 |
+
return feature_extractor, model
|
46 |
|
47 |
+
def inference(self, img_container: ImgContainer):
|
48 |
+
if not img_container.ready:
|
49 |
+
return
|
50 |
|
51 |
+
inputs = self.feature_extractor(list(img_container.imgs), return_tensors="pt")
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
with torch.no_grad():
|
54 |
+
outputs = self.model(**inputs)
|
55 |
+
logits: Tensor = outputs.logits
|
|
|
|
|
56 |
|
57 |
+
# model predicts one of the 400 Kinetics-400 classes
|
58 |
+
max_index = logits.argmax(-1).item()
|
59 |
+
predicted_label = self.model.config.id2label[max_index]
|
60 |
+
|
61 |
+
img_container.frame_rate.label = (
|
62 |
+
f"{predicted_label}_{logits[0][max_index]:.2f}%"
|
63 |
+
)
|
64 |
|
65 |
+
TOP_K = 12
|
66 |
+
# logits = np.squeeze(logits)
|
67 |
+
logits = logits.squeeze().numpy()
|
68 |
+
indices = np.argsort(logits)[::-1][:TOP_K]
|
69 |
+
values = logits[indices]
|
70 |
|
71 |
+
results: List[Tuple[str, float]] = []
|
72 |
+
for index, value in zip(indices, values):
|
73 |
+
predicted_label = self.model.config.id2label[index]
|
74 |
+
# print(f"Label: {predicted_label} - {value:.2f}%")
|
75 |
+
results.append((predicted_label, value))
|
|
|
|
|
76 |
|
77 |
+
img_container.rs = pd.DataFrame(results, columns=("Label", "Confidence"))
|
78 |
|
79 |
+
def get_frames_per_video(self, model_name: str) -> int:
|
80 |
+
if "base-finetuned" in model_name:
|
81 |
+
return 8
|
82 |
+
elif "hr-finetuned" in model_name:
|
83 |
+
return 16
|
84 |
+
else:
|
85 |
+
return 96
|
|
|
|
|
|
|
86 |
|
87 |
|
88 |
+
def main(args: ArgParser):
|
89 |
+
activity_model = ActivityModel(args)
|
90 |
+
img_container = ImgContainer(activity_model.frames_per_video)
|
91 |
|
92 |
+
num_skips = 0
|
93 |
|
94 |
+
# define a video capture object
|
95 |
+
camera = cv2.VideoCapture(0)
|
96 |
|
97 |
+
frame_width = int(camera.get(3))
|
98 |
+
frame_height = int(camera.get(4))
|
99 |
+
size = (frame_width, frame_height)
|
100 |
|
101 |
+
video_output = cv2.VideoWriter(
|
102 |
+
"activities.mp4", cv2.VideoWriter_fourcc(*"MP4V"), 10, size
|
103 |
+
)
|
104 |
|
105 |
+
if camera.isOpened() == False:
|
106 |
+
print("Error reading video file")
|
|
|
107 |
|
108 |
+
while camera.isOpened():
|
109 |
+
# Capture the video frame
|
110 |
+
# by frame
|
111 |
+
ret, frame = camera.read()
|
112 |
|
113 |
+
num_skips = (num_skips + 1) % args.num_skip_frames
|
|
|
114 |
|
115 |
+
img_container.img = frame
|
116 |
+
img_container.frame_rate.count()
|
|
|
|
|
117 |
|
118 |
+
if num_skips == 0:
|
119 |
+
img_container.add_frame(frame)
|
120 |
+
activity_model.inference(img_container)
|
121 |
+
rs = img_container.frame_rate.show_fps(frame, img_container.is_recording)
|
122 |
|
123 |
+
# Display the resulting frame
|
124 |
+
cv2.imshow("ActivityTracking", rs)
|
125 |
|
126 |
+
if img_container.is_recording:
|
127 |
+
video_output.write(rs)
|
|
|
|
|
128 |
|
129 |
+
# the 'q' button is set as the
|
130 |
+
# quitting button you may use any
|
131 |
+
# desired button of your choice
|
132 |
+
k = cv2.waitKey(1)
|
133 |
|
134 |
+
if k == ord("q"):
|
135 |
+
break
|
136 |
+
elif k == ord("r"):
|
137 |
+
img_container.toggle_recording()
|
138 |
|
139 |
+
# After the loop release the cap object
|
140 |
+
camera.release()
|
141 |
+
video_output.release()
|
142 |
+
# Destroy all the windows
|
143 |
+
cv2.destroyAllWindows()
|
144 |
|
|
|
|
|
|
|
|
|
145 |
|
146 |
+
if __name__ == "__main__":
|
147 |
+
args = ArgParser().parse_args()
|
148 |
+
main(args)
|
|
|
|