HenryRom commited on
Commit
b0bd60b
β€’
1 Parent(s): 7e7bbec

Upload 4 files

Browse files
Files changed (4) hide show
  1. app.py +172 -0
  2. data.csv +30 -0
  3. info.md +16 -0
  4. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### ----------------------------- ###
2
+ ### libraries ###
3
+ ### ----------------------------- ###
4
+
5
+ import gradio as gr
6
+ import pandas as pd
7
+ import numpy as np
8
+ from sklearn.model_selection import train_test_split
9
+ from sklearn.linear_model import LogisticRegression
10
+ from sklearn import metrics
11
+
12
+
13
+ ### ------------------------------ ###
14
+ ### data transformation ###
15
+ ### ------------------------------ ###
16
+
17
+ # load dataset
18
+ uncleaned_data = pd.read_csv('data.csv')
19
+
20
+ # remove timestamp from dataset (always first column)
21
+ uncleaned_data = uncleaned_data.iloc[: , 1:]
22
+ data = pd.DataFrame()
23
+
24
+ # keep track of which columns are categorical and what
25
+ # those columns' value mappings are
26
+ # structure: {colname1: {...}, colname2: {...} }
27
+ cat_value_dicts = {}
28
+ final_colname = uncleaned_data.columns[len(uncleaned_data.columns) - 1]
29
+
30
+ # for each column...
31
+ for (colname, colval) in uncleaned_data.iteritems():
32
+
33
+ # check if col is already a number; if so, add col directly
34
+ # to new dataframe and skip to next column
35
+ if isinstance(colval.values[0], (np.integer, float)):
36
+ data[colname] = uncleaned_data[colname].copy()
37
+ continue
38
+
39
+ # structure: {0: "lilac", 1: "blue", ...}
40
+ new_dict = {}
41
+ val = 0 # first index per column
42
+ transformed_col_vals = [] # new numeric datapoints
43
+
44
+ # if not, for each item in that column...
45
+ for (row, item) in enumerate(colval.values):
46
+
47
+ # if item is not in this col's dict...
48
+ if item not in new_dict:
49
+ new_dict[item] = val
50
+ val += 1
51
+
52
+ # then add numerical value to transformed dataframe
53
+ transformed_col_vals.append(new_dict[item])
54
+
55
+ # reverse dictionary only for final col (0, 1) => (vals)
56
+ if colname == final_colname:
57
+ new_dict = {value : key for (key, value) in new_dict.items()}
58
+
59
+ cat_value_dicts[colname] = new_dict
60
+ data[colname] = transformed_col_vals
61
+
62
+
63
+ ### -------------------------------- ###
64
+ ### model training ###
65
+ ### -------------------------------- ###
66
+
67
+ # select features and predicton; automatically selects last column as prediction
68
+ cols = len(data.columns)
69
+ num_features = cols - 1
70
+ x = data.iloc[: , :num_features]
71
+ y = data.iloc[: , num_features:]
72
+
73
+ # split data into training and testing sets
74
+ x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)
75
+
76
+ # instantiate the model (using default parameters)
77
+ model = LogisticRegression()
78
+ model.fit(x_train, y_train.values.ravel())
79
+ y_pred = model.predict(x_test)
80
+
81
+
82
+ ### -------------------------------- ###
83
+ ### article generation ###
84
+ ### -------------------------------- ###
85
+ # borrow file reading function from reader.py
86
+
87
+ def get_feat():
88
+ feats = [abs(x) for x in model.coef_[0]]
89
+ max_val = max(feats)
90
+ idx = feats.index(max_val)
91
+ return data.columns[idx]
92
+
93
+ acc = str(round(metrics.accuracy_score(y_test, y_pred) * 100, 1)) + "%"
94
+ most_imp_feat = get_feat()
95
+ # info = get_article(acc, most_imp_feat)
96
+
97
+
98
+
99
+ ### ------------------------------- ###
100
+ ### interface creation ###
101
+ ### ------------------------------- ###
102
+
103
+
104
+ # predictor for generic number of features
105
+ def general_predictor(*args):
106
+ features = []
107
+
108
+ # transform categorical input
109
+ for colname, arg in zip(data.columns, args):
110
+ if (colname in cat_value_dicts):
111
+ features.append(cat_value_dicts[colname][arg])
112
+ else:
113
+ features.append(arg)
114
+
115
+ # predict single datapoint
116
+ new_input = [features]
117
+ result = model.predict(new_input)
118
+ return cat_value_dicts[final_colname][result[0]]
119
+
120
+ # add data labels to replace those lost via star-args
121
+
122
+
123
+ block = gr.Blocks()
124
+
125
+ with open('info.md') as f:
126
+ with block:
127
+ gr.Markdown(f.readline())
128
+ gr.Markdown('Take the quiz to get a personalized recommendation using AI.')
129
+
130
+ with gr.Row():
131
+ with gr.Box():
132
+ inputls = []
133
+ for colname in data.columns:
134
+ # skip last column
135
+ if colname == final_colname:
136
+ continue
137
+
138
+ # access categories dict if data is categorical
139
+ # otherwise, just use a number input
140
+ if colname in cat_value_dicts:
141
+ radio_options = list(cat_value_dicts[colname].keys())
142
+ inputls.append(gr.inputs.Dropdown(choices=radio_options, type="value", label=colname))
143
+ else:
144
+ # add numerical input
145
+ inputls.append(gr.inputs.Number(label=colname))
146
+ gr.Markdown("<br />")
147
+
148
+ submit = gr.Button("Click to see your personalized result!", variant="primary")
149
+ gr.Markdown("<br />")
150
+ output = gr.Textbox(label="Your recommendation:", placeholder="your recommendation will appear here")
151
+
152
+ submit.click(fn=general_predictor, inputs=inputls, outputs=output)
153
+ gr.Markdown("<br />")
154
+
155
+ with gr.Row():
156
+ with gr.Box():
157
+ gr.Markdown(f"<h3>Accuracy: </h3>{acc}")
158
+ with gr.Box():
159
+ gr.Markdown(f"<h3>Most important feature: </h3>{most_imp_feat}")
160
+
161
+ gr.Markdown("<br />")
162
+
163
+ with gr.Box():
164
+ gr.Markdown('''⭐ Note that model accuracy is based on the uploaded data.csv and reflects how well the AI model can give correct recommendations for <em>that dataset</em>. Model accuracy and most important feature can be helpful for understanding how the model works, but <em>should not be considered absolute facts about the real world</em>.''')
165
+
166
+ with gr.Box():
167
+ with open('info.md') as f:
168
+ f.readline()
169
+ gr.Markdown(f.read())
170
+
171
+ # show the interface
172
+ block.launch()
data.csv ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Timestamp,What genre are you interested in ,What is your ideal movie length,What Type of Movie do you Want to Watch,What type of rating do you want to watch,Do you prefer fiction or non fiction,What movie would you want to watch
2
+ 2/13/2023 12:02:04,Action,2 hrs,Action movie,Pg 13,Fiction,Avengers
3
+ 2/14/2023 8:24:08,Horror,1 1/2 hrs,Scary movie,R,Fiction,A Dog's Purpose
4
+ 2/14/2023 8:25:24,Comedy,1 1/2 hrs,Happy movie,Pg 13,Non-fiction,Puss in boots
5
+ 2/14/2023 8:27:00,Action,2 hrs,Action movie,R,Fiction,Avengers
6
+ 2/14/2023 8:27:21,Kids Movie,1 1/2 hrs,Thought provoking movie,Pg 13,Fiction,Puss in boots
7
+ 2/14/2023 8:27:24,Romance,3 hrs,Sad movie,R,Fiction,Titanic
8
+ 2/14/2023 8:28:39,Horror,2 hrs,Scary movie,R,Fiction,Puss in boots
9
+ 2/14/2023 8:29:33,Action,2 hrs,Action movie,R,Fiction,Avengers
10
+ 2/14/2023 8:29:40,Action,2 hrs,Action movie,Pg 13,Fiction,Avengers
11
+ 2/14/2023 8:30:21,Kids Movie,3 hrs,Scary movie,R,Fiction,Alien
12
+ 2/14/2023 8:30:21,Comedy,1 1/2 hrs,Happy movie,Pg 13,Fiction,Jumanji
13
+ 2/14/2023 8:30:56,Comedy,2 hrs,Thought provoking movie,R,Non-fiction,Puss in boots
14
+ 2/14/2023 8:32:35,Horror,1 1/2 hrs,Scary movie,R,Non-fiction,Alien
15
+ 2/14/2023 8:34:27,Horror,2 hrs,Scary movie,Pg 13,Fiction,Jumanji
16
+ 2/14/2023 8:34:40,Action,2 hrs,Action movie,Pg 13,Fiction,Puss in boots
17
+ 2/14/2023 8:34:50,Action,2 hrs,Action movie,R,Fiction,Jumanji
18
+ 2/14/2023 8:42:25,Comedy,1 1/2 hrs,Happy movie,Pg,Fiction,Puss in boots
19
+ 2/14/2023 8:44:22,Comedy,2 hrs,Action movie,Pg 13,Fiction,Puss in boots
20
+ 2/14/2023 11:11:49,Romance,2 hrs,Happy movie,R,Fiction,Puss in boots
21
+ 2/14/2023 11:18:01,Comedy,1 1/2 hrs,Thought provoking movie,R,Fiction,Jumanji
22
+ 2/14/2023 12:07:32,Horror,1 1/2 hrs,Scary movie,R,Fiction,Puss in boots
23
+ 2/14/2023 12:10:06,Horror,2 hrs,Scary movie,R,Fiction,Alien
24
+ 2/14/2023 12:14:23,Romance,1 1/2 hrs,Action movie,Pg 13,Fiction,Jumanji
25
+ 2/14/2023 12:16:57,Romance,2 hrs,Thought provoking movie,R,Fiction,A Dog's Purpose
26
+ 2/14/2023 12:19:00,Horror,2 hrs,Scary movie,R,Fiction,Alien
27
+ 2/14/2023 12:19:54,Comedy,1 1/2 hrs,Action movie,Pg 13,Fiction,Avengers
28
+ 2/14/2023 12:29:02,Comedy,1 1/2 hrs,Happy movie,Pg 13,Fiction,Avengers
29
+ 2/14/2023 12:38:54,Action,2 hrs,Thought provoking movie,R,Fiction,Puss in boots
30
+ 2/14/2023 12:39:09,Action,2 1/2 hrs,Action movie,R,Non-fiction,Avengers
info.md ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 😌 [Edit info.md - Your app's title here]
2
+
3
+ ### 🧐 Problem Statement and Research Summary
4
+ [add info about your problem statement and your research here!]
5
+
6
+ ### 🎣 Data Collection Plan
7
+ [Edit info.md - add info about what data you collected and why here!]
8
+
9
+ ### πŸ’₯ Ethical Considerations (Data Privacy and Bias)
10
+ * Data privacy: [Edit info.md - add info about you considered users' privacy here!]
11
+ * Bias: [Edit info.md - add info about you considered bias here!]
12
+
13
+ ### πŸ‘» Our Team
14
+ [Edit info.md - add info about your team members here!]
15
+
16
+ ![aiEDU logo](https://images.squarespace-cdn.com/content/v1/5e4efdef6d10420691f02bc1/5db5a8a3-1761-4fce-a096-bd5f2515162f/aiEDU+_black+logo+stacked.png?format=100w)
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ pandas==1.3.4
2
+ scikit-learn==1.0.1
3
+ numpy==1.21.4