Spaces:
Sleeping
Sleeping
"""Full definition of a GPT NeoX Language Model, all of it in this single file. | |
Based on the nanoGPT implementation: https://github.com/karpathy/nanoGPT and | |
https://github.com/EleutherAI/gpt-neox/tree/main/megatron/model. | |
""" | |
import math | |
from typing import Any, Optional, Tuple | |
import torch | |
import torch.nn as nn | |
from typing_extensions import Self | |
from tsai_gpt.config import Config | |
class GPT(nn.Module): | |
def __init__(self, config: Config) -> None: | |
super().__init__() | |
assert config.padded_vocab_size is not None | |
self.config = config | |
self.lm_head = nn.Linear(config.n_embd, config.padded_vocab_size, bias=config.lm_head_bias) | |
self.transformer = nn.ModuleDict( | |
dict( | |
wte=nn.Embedding(config.padded_vocab_size, config.n_embd), | |
h=nn.ModuleList(Block(config) for _ in range(config.n_layer)), | |
ln_f=config.norm_class(config.n_embd, eps=config.norm_eps), | |
) | |
) | |
self.max_seq_length = self.config.block_size | |
self.mask_cache: Optional[torch.Tensor] = None | |
def max_seq_length(self) -> int: | |
return self._max_seq_length | |
def max_seq_length(self, value: int) -> None: | |
""" | |
When doing inference, the sequences used might be shorter than the model's context length. | |
This allows setting a smaller number to avoid allocating unused memory | |
""" | |
if value > self.config.block_size: | |
raise ValueError(f"Cannot attend to {value}, block size is only {self.config.block_size}") | |
self._max_seq_length = value | |
if not hasattr(self, "cos"): | |
# first call | |
cos, sin = self.rope_cache() | |
self.register_buffer("cos", cos, persistent=False) | |
self.register_buffer("sin", sin, persistent=False) | |
elif value != self.cos.size(0): | |
# override | |
self.cos, self.sin = self.rope_cache(device=self.cos.device) | |
# the mask and kv cache size will get updated on `set_kv_cache`. we cannot update it here because we don't know | |
# if the kv cache is expected | |
def reset_parameters(self) -> None: | |
# Trigger resetting the rope-cache | |
self.max_seq_length = self.config.block_size | |
def _init_weights(self, module: nn.Module) -> None: | |
"""Meant to be used with `gpt.apply(gpt._init_weights)`.""" | |
if isinstance(module, nn.Linear): | |
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
if module.bias is not None: | |
torch.nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.Embedding): | |
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
def forward(self, idx: torch.Tensor, input_pos: Optional[torch.Tensor] = None) -> torch.Tensor: | |
T = idx.size(1) | |
if self.max_seq_length < T: | |
raise ValueError(f"Cannot forward sequence of length {T}, max seq length is only {self.max_seq_length}.") | |
if input_pos is not None: # use the kv cache | |
cos = self.cos.index_select(0, input_pos) | |
sin = self.sin.index_select(0, input_pos) | |
if self.mask_cache is None: | |
raise TypeError("You need to call `gpt.set_kv_cache()`") | |
mask = self.mask_cache.index_select(2, input_pos) | |
else: | |
cos = self.cos[:T] | |
sin = self.sin[:T] | |
mask = None | |
x = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd) | |
for block in self.transformer.h: | |
x = block(x, cos, sin, mask, input_pos) | |
x = self.transformer.ln_f(x) | |
return self.lm_head(x) # (b, t, vocab_size) | |
def from_name(cls, name: str, **kwargs: Any) -> Self: | |
return cls(Config.from_name(name, **kwargs)) | |
def rope_cache(self, device: Optional[torch.device] = None) -> Tuple[torch.Tensor, torch.Tensor]: | |
return build_rope_cache( | |
seq_len=self.max_seq_length, | |
n_elem=self.config.rope_n_elem, | |
device=device, | |
condense_ratio=self.config.rope_condense_ratio, | |
base=self.config.rope_base, | |
) | |
def set_kv_cache( | |
self, | |
batch_size: int, | |
rope_cache_length: Optional[int] = None, | |
device: Optional[torch.device] = None, | |
dtype: Optional[torch.dtype] = None, | |
) -> None: | |
if rope_cache_length is None: | |
rope_cache_length = self.cos.size(-1) | |
max_seq_length = self.max_seq_length | |
# initialize the kv cache for all blocks | |
for block in self.transformer.h: | |
block.attn.kv_cache = block.attn.build_kv_cache( | |
batch_size, max_seq_length, rope_cache_length, device, dtype | |
) | |
if self.mask_cache is None or self.mask_cache.size(3) != max_seq_length: | |
# passing `attn_mask` to SDPA downgrades it to use the inefficient implementation. since we only need the mask | |
# for the kv-cache support (only during inference), we only create it in that situation | |
# this will be resolved by https://github.com/pytorch/pytorch/issues/96099 | |
ones = torch.ones((max_seq_length, max_seq_length), device=device, dtype=torch.bool) | |
self.mask_cache = torch.tril(ones).unsqueeze(0).unsqueeze(0) | |
def clear_kv_cache(self) -> None: | |
self.mask_cache = None | |
for block in self.transformer.h: | |
block.attn.kv_cache = None | |
class Block(nn.Module): | |
def __init__(self, config: Config) -> None: | |
super().__init__() | |
self.norm_1 = config.norm_class(config.n_embd, eps=config.norm_eps) | |
self.attn = CausalSelfAttention(config) | |
self.norm_2 = None if config.shared_attention_norm else config.norm_class(config.n_embd, eps=config.norm_eps) | |
self.mlp = config.mlp_class(config) | |
self.config = config | |
def forward( | |
self, | |
x: torch.Tensor, | |
cos: torch.Tensor, | |
sin: torch.Tensor, | |
mask: Optional[torch.Tensor] = None, | |
input_pos: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
n_1 = self.norm_1(x) | |
h = self.attn(n_1, cos, sin, mask, input_pos) | |
if self.config.parallel_residual: | |
n_2 = n_1 if self.config.shared_attention_norm else self.norm_2(x) | |
x = self.mlp(n_2) + h + x | |
else: | |
if self.config.shared_attention_norm: | |
raise NotImplementedError( | |
"No checkpoint amongst the ones we support uses this configuration" | |
" (non-parallel residual and shared attention norm)." | |
) | |
x = h + x | |
x = self.mlp(self.norm_2(x)) + x | |
return x | |
class CausalSelfAttention(nn.Module): | |
def __init__(self, config: Config) -> None: | |
super().__init__() | |
shape = (config.n_head + 2 * config.n_query_groups) * config.head_size | |
# key, query, value projections for all heads, but in a batch | |
self.attn = nn.Linear(config.n_embd, shape, bias=config.bias) | |
# output projection | |
self.proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) | |
# disabled by default | |
self.kv_cache: Optional[KVCache] = None | |
self.config = config | |
def forward( | |
self, | |
x: torch.Tensor, | |
cos: torch.Tensor, | |
sin: torch.Tensor, | |
mask: Optional[torch.Tensor] = None, | |
input_pos: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd) | |
qkv = self.attn(x) | |
# assemble into a number of query groups to support MHA, MQA and GQA together (see `config.n_query_groups`) | |
q_per_kv = self.config.n_head // self.config.n_query_groups | |
total_qkv = q_per_kv + 2 # each group has 1+ queries, 1 key, and 1 value | |
qkv = qkv.view(B, T, self.config.n_query_groups, total_qkv, self.config.head_size) | |
qkv = qkv.permute(0, 2, 3, 1, 4) # (B, n_query_groups, total_qkv, T, hs) | |
# split batched computation into three | |
q, k, v = qkv.split((q_per_kv, 1, 1), dim=2) | |
# maybe repeat k and v if for the non multi-head attention cases | |
# training: flash attention requires it | |
# inference: multi-query would require a full kv cache so avoid it to limit its memory usage | |
if self.config.n_query_groups != self.config.n_head and (input_pos is None or self.config.n_query_groups != 1): | |
k = k.expand(B, self.config.n_query_groups, q_per_kv, T, self.config.head_size) | |
v = v.expand(B, self.config.n_query_groups, q_per_kv, T, self.config.head_size) | |
q = q.reshape(B, -1, T, self.config.head_size) # (B, nh_q, T, hs) | |
k = k.reshape(B, -1, T, self.config.head_size) # (B, nh_k, T, hs) | |
v = v.reshape(B, -1, T, self.config.head_size) # (B, nh_v, T, hs) | |
q_roped = apply_rope(q[..., : self.config.rope_n_elem], cos, sin) | |
k_roped = apply_rope(k[..., : self.config.rope_n_elem], cos, sin) | |
q = torch.cat((q_roped, q[..., self.config.rope_n_elem :]), dim=-1) | |
k = torch.cat((k_roped, k[..., self.config.rope_n_elem :]), dim=-1) | |
if input_pos is not None: | |
if not isinstance(self.kv_cache, KVCache): | |
raise TypeError("You need to call `gpt.set_kv_cache()`") | |
k, v = self.kv_cache(input_pos, k, v) | |
y = self.scaled_dot_product_attention(q, k, v, mask) | |
y = y.reshape(B, T, C) # re-assemble all head outputs side by side | |
# output projection | |
return self.proj(y) | |
def scaled_dot_product_attention( | |
self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, mask: Optional[torch.Tensor] = None | |
) -> torch.Tensor: | |
scale = 1.0 / math.sqrt(self.config.head_size) | |
y = torch.nn.functional.scaled_dot_product_attention( | |
q, k, v, attn_mask=mask, dropout_p=0.0, scale=scale, is_causal=mask is None | |
) | |
return y.transpose(1, 2) | |
def build_kv_cache( | |
self, | |
batch_size: int, | |
max_seq_length: int, | |
rope_cache_length: Optional[int] = None, | |
device: Optional[torch.device] = None, | |
dtype: Optional[torch.dtype] = None, | |
) -> "KVCache": | |
heads = 1 if self.config.n_query_groups == 1 else self.config.n_head | |
v_shape = (batch_size, heads, max_seq_length, self.config.head_size) | |
if rope_cache_length is None: | |
if self.config.rotary_percentage != 1.0: | |
raise TypeError("Please pass the `rope_cache_length=gpt.cos.size(-1)` value") | |
k_shape = v_shape | |
else: | |
k_shape = ( | |
batch_size, | |
heads, | |
max_seq_length, | |
rope_cache_length + self.config.head_size - self.config.rope_n_elem, | |
) | |
return KVCache(k_shape, v_shape, device=device, dtype=dtype) | |
class GptNeoxMLP(nn.Module): | |
def __init__(self, config: Config) -> None: | |
super().__init__() | |
self.fc = nn.Linear(config.n_embd, config.intermediate_size, bias=config.bias) | |
self.proj = nn.Linear(config.intermediate_size, config.n_embd, bias=config.bias) | |
self.config = config | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.fc(x) | |
x = torch.nn.functional.gelu(x, approximate=self.config.gelu_approximate) | |
return self.proj(x) | |
class LLaMAMLP(nn.Module): | |
def __init__(self, config: Config) -> None: | |
super().__init__() | |
self.fc_1 = nn.Linear(config.n_embd, config.intermediate_size, bias=config.bias) | |
self.fc_2 = nn.Linear(config.n_embd, config.intermediate_size, bias=config.bias) | |
self.proj = nn.Linear(config.intermediate_size, config.n_embd, bias=config.bias) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x_fc_1 = self.fc_1(x) | |
x_fc_2 = self.fc_2(x) | |
x = torch.nn.functional.silu(x_fc_1) * x_fc_2 | |
return self.proj(x) | |
def build_rope_cache( | |
seq_len: int, n_elem: int, device: Optional[torch.device] = None, base: int = 10000, condense_ratio: int = 1 | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Enhanced Transformer with Rotary Position Embedding. | |
Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/ | |
transformers/rope/__init__.py. MIT License: | |
https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license. | |
""" | |
# $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$ | |
theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, device=device).float() / n_elem)) | |
# Create position indexes `[0, 1, ..., seq_len - 1]` | |
seq_idx = torch.arange(seq_len, device=device) / condense_ratio | |
# Calculate the product of position index and $\theta_i$ | |
idx_theta = torch.outer(seq_idx, theta).repeat(1, 2) | |
return torch.cos(idx_theta), torch.sin(idx_theta) | |
def apply_rope(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor: | |
head_size = x.size(-1) | |
x1 = x[..., : head_size // 2] # (B, nh, T, hs/2) | |
x2 = x[..., head_size // 2 :] # (B, nh, T, hs/2) | |
rotated = torch.cat((-x2, x1), dim=-1) # (B, nh, T, hs) | |
roped = (x * cos) + (rotated * sin) | |
return roped.type_as(x) | |
class KVCache(nn.Module): | |
def __init__( | |
self, | |
k_shape: Tuple[int, int, int, int], | |
v_shape: Tuple[int, int, int, int], | |
device: Optional[torch.device] = None, | |
dtype: Optional[torch.dtype] = None, | |
) -> None: | |
super().__init__() | |
self.register_buffer("k", torch.zeros(k_shape, device=device, dtype=dtype), persistent=False) | |
self.register_buffer("v", torch.zeros(v_shape, device=device, dtype=dtype), persistent=False) | |
def forward(self, input_pos: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | |
# move the buffer to the activation dtype for when AMP is used | |
self.k = self.k.to(k.dtype) | |
self.v = self.v.to(v.dtype) | |
# update the cache | |
k = self.k.index_copy_(2, input_pos, k) | |
v = self.v.index_copy_(2, input_pos, v) | |
return k, v |