File size: 5,495 Bytes
b3bfdeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b32c86f
b3bfdeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

import torch
import random
import torch.nn as nn
import lightning as L
from pathlib import Path
from torch.utils.data import DataLoader
from lightning.fabric.loggers import CSVLogger
from lightning.fabric.strategies import FSDPStrategy

from tsai_gpt.model import GPT, Block, Config
from tsai_gpt.tokenizer import Tokenizer
from tsai_gpt.utils import get_default_supported_precision, load_checkpoint, gptq_quantization


example_text = [
    "In a galaxy far, far away, an intergalactic council convenes to discuss the rising cost of lightsaber batteries. Among them is an unlikely representative: a droid with a penchant for economics...",
    "As Sherlock Holmes and Dr. Watson enter the world of social media influencers, they find their first case: the mysterious disappearance of a famous TikTok star's like button.",
    "In the midst of a zombie apocalypse, a group of survivors discovers a library with every book intact except for cookbooks. Their leader, a former TV chef, decides to write the ultimate survival recipe book titled...",
    "A time traveler accidentally attends Shakespeare's first play, but instead of a quill, she hands him a smartphone with autocorrect. The resulting play is...",
    "Amidst the chaos of a Hogwarts School reunion, a magical mishap swaps the voices of Professors Dumbledore and Snape, leading to an unexpected duet in the Great Hall that goes viral in the wizarding world."
]

examples = [
             [
                example_text[i], 
                round(random.uniform(0.7,1), 1), 
                int(random.uniform(120,200)), 
                int(random.uniform(200,300))] for i,x in enumerate(example_text)
           ]


model_name = "pythia-160m"
name = "redpajama"

checkpoint_dir = Path("iter-014870-ckpt.pth")
quantize = None
strategy = "auto"
devices = 1
precision = get_default_supported_precision(training=False)
plugins = None
fabric = L.Fabric(devices=devices, precision=precision, strategy=strategy, plugins=plugins)
fabric.launch()


with fabric.init_module(empty_init=True), gptq_quantization(quantize=="gptq.int4"):
    config = Config.from_name(model_name)
    model = GPT(config)

model.eval()
model = fabric.setup_module(model)
load_checkpoint(fabric, model, checkpoint_dir)

tokenizer = Tokenizer(Path('tokenizer'))


def generate_dialogue(input_text, temperature, max_tokens, top_k):
    encoded = tokenizer.encode(input_text, device=fabric.device)
    max_returned_tokens = encoded.size(0) + max_tokens


    with fabric.init_tensor():
        # set the max_seq_length to limit the memory usage to what we need
        model.max_seq_length = max_returned_tokens


    with fabric.init_tensor():
        model.set_kv_cache(batch_size=1)

    y = generate(model, encoded, max_returned_tokens, temperature=temperature, top_k=top_k)

    return(tokenizer.decode(y))


@torch.inference_mode()
def generate(
    model: GPT,
    idx: torch.Tensor,
    max_returned_tokens: int,
    *,
    temperature: float = 1.0,
    top_k:int = None,
    eos_id:int = None,
) -> torch.Tensor:
    """Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested.

    The implementation of this function is modified from A. Karpathy's nanoGPT.

    Args:
        model: The model to use.
        idx: Tensor of shape (T) with indices of the prompt sequence.
        max_returned_tokens: The maximum number of tokens to return (given plus generated).
        temperature: Scales the predicted logits by 1 / temperature.
        top_k: If specified, only sample among the tokens with the k highest probabilities.
        eos_id: If specified, stop generating any more token once the <eos> token is triggered.
    """
    T = idx.size(0)
    assert max_returned_tokens > T
    if model.max_seq_length < max_returned_tokens - 1:
        # rolling the kv cache based on the `input_pos` value would be necessary. However, doing so would introduce a
        # data dependency on the `input_pos` tensor and impact model compilation. Since this setting is uncommon, we do
        # not support it to avoid negatively impacting the overall speed
        raise NotImplementedError(f"max_seq_length {model.max_seq_length} needs to be >= {max_returned_tokens - 1}")

    device, dtype = idx.device, idx.dtype
    # create an empty tensor of the expected final shape and fill in the current tokens
    empty = torch.empty(max_returned_tokens, dtype=dtype, device=device)
    empty[:T] = idx
    idx = empty
    input_pos = torch.arange(0, T, device=device)

    # generate up to a fixed number of tokens
    for _ in range(max_returned_tokens - T):
        x = idx.index_select(0, input_pos).view(1, -1)

        # forward
        logits = model(x, input_pos)
        logits = logits[0, -1] / temperature

        # optionally crop the logits to only the top k options
        if top_k is not None:
            v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
            logits = torch.where(logits < v[[-1]], -float("Inf"), logits)

        probs = torch.nn.functional.softmax(logits, dim=-1)
        idx_next = torch.multinomial(probs, num_samples=1).to(dtype=dtype)

        # advance
        input_pos = input_pos[-1:] + 1

        # concatenate the new generation
        idx = idx.index_copy(0, input_pos, idx_next)

        # if <eos> token is triggered, return the output (stop generation)
        if idx_next == eos_id:
            return idx[:input_pos]  # include the EOS token

    return idx