File size: 17,608 Bytes
bcec73a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
from torch import nn
import torch
import torch.nn.functional as F
from modules.util import AntiAliasInterpolation2d, make_coordinate_grid
from torchvision import models
import numpy as np
from torch.autograd import grad
import pdb
import depth

class Vgg19(torch.nn.Module):
    """
    Vgg19 network for perceptual loss. See Sec 3.3.
    """
    def __init__(self, requires_grad=False):
        super(Vgg19, self).__init__()
        vgg_pretrained_features = models.vgg19(pretrained=True).features
        self.slice1 = torch.nn.Sequential()
        self.slice2 = torch.nn.Sequential()
        self.slice3 = torch.nn.Sequential()
        self.slice4 = torch.nn.Sequential()
        self.slice5 = torch.nn.Sequential()
        for x in range(2):
            self.slice1.add_module(str(x), vgg_pretrained_features[x])
        for x in range(2, 7):
            self.slice2.add_module(str(x), vgg_pretrained_features[x])
        for x in range(7, 12):
            self.slice3.add_module(str(x), vgg_pretrained_features[x])
        for x in range(12, 21):
            self.slice4.add_module(str(x), vgg_pretrained_features[x])
        for x in range(21, 30):
            self.slice5.add_module(str(x), vgg_pretrained_features[x])

        self.mean = torch.nn.Parameter(data=torch.Tensor(np.array([0.485, 0.456, 0.406]).reshape((1, 3, 1, 1))),
                                       requires_grad=False)
        self.std = torch.nn.Parameter(data=torch.Tensor(np.array([0.229, 0.224, 0.225]).reshape((1, 3, 1, 1))),
                                      requires_grad=False)

        if not requires_grad:
            for param in self.parameters():
                param.requires_grad = False

    def forward(self, X):
        X = (X - self.mean) / self.std
        h_relu1 = self.slice1(X)
        h_relu2 = self.slice2(h_relu1)
        h_relu3 = self.slice3(h_relu2)
        h_relu4 = self.slice4(h_relu3)
        h_relu5 = self.slice5(h_relu4)
        out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5]
        return out


class ImagePyramide(torch.nn.Module):
    """
    Create image pyramide for computing pyramide perceptual loss. See Sec 3.3
    """
    def __init__(self, scales, num_channels):
        super(ImagePyramide, self).__init__()
        downs = {}
        for scale in scales:
            downs[str(scale).replace('.', '-')] = AntiAliasInterpolation2d(num_channels, scale)
        self.downs = nn.ModuleDict(downs)

    def forward(self, x):
        out_dict = {}
        for scale, down_module in self.downs.items():
            out_dict['prediction_' + str(scale).replace('-', '.')] = down_module(x)
        return out_dict


class Transform:
    """
    Random tps transformation for equivariance constraints. See Sec 3.3
    """
    def __init__(self, bs, **kwargs):
        noise = torch.normal(mean=0, std=kwargs['sigma_affine'] * torch.ones([bs, 2, 3]))
        self.theta = noise + torch.eye(2, 3).view(1, 2, 3)
        self.bs = bs

        if ('sigma_tps' in kwargs) and ('points_tps' in kwargs):
            self.tps = True
            self.control_points = make_coordinate_grid((kwargs['points_tps'], kwargs['points_tps']), type=noise.type())
            self.control_points = self.control_points.unsqueeze(0)
            self.control_params = torch.normal(mean=0,
                                               std=kwargs['sigma_tps'] * torch.ones([bs, 1, kwargs['points_tps'] ** 2]))
        else:
            self.tps = False

    def transform_frame(self, frame):
        grid = make_coordinate_grid(frame.shape[2:], type=frame.type()).unsqueeze(0)
        grid = grid.view(1, frame.shape[2] * frame.shape[3], 2)
        grid = self.warp_coordinates(grid).view(self.bs, frame.shape[2], frame.shape[3], 2)
        return F.grid_sample(frame, grid, padding_mode="reflection")

    def warp_coordinates(self, coordinates):
        theta = self.theta.type(coordinates.type())
        theta = theta.unsqueeze(1)
        transformed = torch.matmul(theta[:, :, :, :2], coordinates.unsqueeze(-1)) + theta[:, :, :, 2:]
        transformed = transformed.squeeze(-1)

        if self.tps:
            control_points = self.control_points.type(coordinates.type())
            control_params = self.control_params.type(coordinates.type())
            distances = coordinates.view(coordinates.shape[0], -1, 1, 2) - control_points.view(1, 1, -1, 2)
            distances = torch.abs(distances).sum(-1)

            result = distances ** 2
            result = result * torch.log(distances + 1e-6)
            result = result * control_params
            result = result.sum(dim=2).view(self.bs, coordinates.shape[1], 1)
            transformed = transformed + result

        return transformed

    def jacobian(self, coordinates):
        new_coordinates = self.warp_coordinates(coordinates)
        grad_x = grad(new_coordinates[..., 0].sum(), coordinates, create_graph=True)
        grad_y = grad(new_coordinates[..., 1].sum(), coordinates, create_graph=True)
        jacobian = torch.cat([grad_x[0].unsqueeze(-2), grad_y[0].unsqueeze(-2)], dim=-2)
        return jacobian


def detach_kp(kp):
    return {key: value.detach() for key, value in kp.items()}


class GeneratorFullModel(torch.nn.Module):
    """
    Merge all generator related updates into single model for better multi-gpu usage
    """

    def __init__(self, kp_extractor, generator, discriminator, train_params,opt):
        super(GeneratorFullModel, self).__init__()
        self.kp_extractor = kp_extractor
        self.generator = generator
        self.discriminator = discriminator
        self.train_params = train_params
        self.scales = train_params['scales']
        self.disc_scales = self.discriminator.module.scales
        self.pyramid = ImagePyramide(self.scales, generator.module.num_channels)
        if torch.cuda.is_available():
            self.pyramid = self.pyramid.cuda()
        self.opt = opt
        self.loss_weights = train_params['loss_weights']

        if sum(self.loss_weights['perceptual']) != 0:
            self.vgg = Vgg19()
            if torch.cuda.is_available():
                self.vgg = self.vgg.cuda()
        self.depth_encoder = depth.ResnetEncoder(18, False).cuda()
        self.depth_decoder = depth.DepthDecoder(num_ch_enc=self.depth_encoder.num_ch_enc, scales=range(4)).cuda()
        loaded_dict_enc = torch.load('depth/models/weights_19/encoder.pth',map_location='cpu')
        loaded_dict_dec = torch.load('depth/models/weights_19/depth.pth',map_location='cpu')
        filtered_dict_enc = {k: v for k, v in loaded_dict_enc.items() if k in self.depth_encoder.state_dict()}
        self.depth_encoder.load_state_dict(filtered_dict_enc)
        self.depth_decoder.load_state_dict(loaded_dict_dec)
        self.set_requires_grad(self.depth_encoder, False) 
        self.set_requires_grad(self.depth_decoder, False) 
        self.depth_decoder.eval()
        self.depth_encoder.eval()
    def set_requires_grad(self, nets, requires_grad=False):
        """Set requies_grad=Fasle for all the networks to avoid unnecessary computations
        Parameters:
            nets (network list)   -- a list of networks
            requires_grad (bool)  -- whether the networks require gradients or not
        """
        if not isinstance(nets, list):
            nets = [nets]
        for net in nets:
            if net is not None:
                for param in net.parameters():
                    param.requires_grad = requires_grad
    def forward(self, x):
        depth_source = None
        depth_driving = None
        outputs = self.depth_decoder(self.depth_encoder(x['source']))
        depth_source = outputs[("disp", 0)]
        outputs = self.depth_decoder(self.depth_encoder(x['driving']))
        depth_driving = outputs[("disp", 0)]
        
        if self.opt.use_depth:
            kp_source = self.kp_extractor(depth_source)
            kp_driving = self.kp_extractor(depth_driving)
        elif self.opt.rgbd:
            source = torch.cat((x['source'],depth_source),1)
            driving = torch.cat((x['driving'],depth_driving),1)
            kp_source = self.kp_extractor(source)
            kp_driving = self.kp_extractor(driving)
        else:
            kp_source = self.kp_extractor(x['source'])
            kp_driving = self.kp_extractor(x['driving'])
        generated = self.generator(x['source'], kp_source=kp_source, kp_driving=kp_driving, source_depth = depth_source, driving_depth = depth_driving)
        generated.update({'kp_source': kp_source, 'kp_driving': kp_driving})
        loss_values = {}
        pyramide_real = self.pyramid(x['driving'])
        pyramide_generated = self.pyramid(generated['prediction'])
        if sum(self.loss_weights['perceptual']) != 0:
            value_total = 0
            for scale in self.scales:
                x_vgg = self.vgg(pyramide_generated['prediction_' + str(scale)])
                y_vgg = self.vgg(pyramide_real['prediction_' + str(scale)])

                for i, weight in enumerate(self.loss_weights['perceptual']):
                    value = torch.abs(x_vgg[i] - y_vgg[i].detach()).mean()
                    value_total += self.loss_weights['perceptual'][i] * value
                loss_values['perceptual'] = value_total

        if self.loss_weights['generator_gan'] != 0:

            discriminator_maps_generated = self.discriminator(pyramide_generated, kp=detach_kp(kp_driving))

            discriminator_maps_real = self.discriminator(pyramide_real, kp=detach_kp(kp_driving))
            value_total = 0
            for scale in self.disc_scales:
                key = 'prediction_map_%s' % scale
                value = ((1 - discriminator_maps_generated[key]) ** 2).mean()
                value_total += self.loss_weights['generator_gan'] * value
            loss_values['gen_gan'] = value_total

            if sum(self.loss_weights['feature_matching']) != 0:
                value_total = 0
                for scale in self.disc_scales:
                    key = 'feature_maps_%s' % scale
                    for i, (a, b) in enumerate(zip(discriminator_maps_real[key], discriminator_maps_generated[key])):
                        if self.loss_weights['feature_matching'][i] == 0:
                            continue
                        value = torch.abs(a - b).mean()
                        value_total += self.loss_weights['feature_matching'][i] * value
                    loss_values['feature_matching'] = value_total

        if (self.loss_weights['equivariance_value'] + self.loss_weights['equivariance_jacobian']) != 0:
            transform = Transform(x['driving'].shape[0], **self.train_params['transform_params'])
            transformed_frame = transform.transform_frame(x['driving'])
            if self.opt.use_depth:
                outputs = self.depth_decoder(self.depth_encoder(transformed_frame))
                depth_transform = outputs[("disp", 0)]
                transformed_kp = self.kp_extractor(depth_transform)
            elif self.opt.rgbd:
                outputs = self.depth_decoder(self.depth_encoder(transformed_frame))
                depth_transform = outputs[("disp", 0)]
                transform_img = torch.cat((transformed_frame,depth_transform),1)
                transformed_kp = self.kp_extractor(transform_img)
            else:
                transformed_kp = self.kp_extractor(transformed_frame)

            generated['transformed_frame'] = transformed_frame
            generated['transformed_kp'] = transformed_kp

            ## Value loss part
            if self.loss_weights['equivariance_value'] != 0:
                value = torch.abs(kp_driving['value'] - transform.warp_coordinates(transformed_kp['value'])).mean()
                loss_values['equivariance_value'] = self.loss_weights['equivariance_value'] * value

            ## jacobian loss part
            if self.loss_weights['equivariance_jacobian'] != 0:
                jacobian_transformed = torch.matmul(transform.jacobian(transformed_kp['value']),
                                                    transformed_kp['jacobian'])

                normed_driving = torch.inverse(kp_driving['jacobian'])
                normed_transformed = jacobian_transformed
                value = torch.matmul(normed_driving, normed_transformed)

                eye = torch.eye(2).view(1, 1, 2, 2).type(value.type())

                value = torch.abs(eye - value).mean()
                loss_values['equivariance_jacobian'] = self.loss_weights['equivariance_jacobian'] * value


        if self.loss_weights['kp_distance']:
            bz,num_kp,kp_dim = kp_source['value'].shape
            sk = kp_source['value'].unsqueeze(2)-kp_source['value'].unsqueeze(1)
            dk = kp_driving['value'].unsqueeze(2)-kp_driving['value'].unsqueeze(1)
            source_dist_loss = (-torch.sign((torch.sqrt((sk*sk).sum(-1)+1e-8)+torch.eye(num_kp).cuda()*0.2)-0.2)+1).mean()
            driving_dist_loss = (-torch.sign((torch.sqrt((dk*dk).sum(-1)+1e-8)+torch.eye(num_kp).cuda()*0.2)-0.2)+1).mean()
            # driving_dist_loss = (torch.sign(1-(torch.sqrt((dk*dk).sum(-1)+1e-8)+torch.eye(num_kp).cuda()))+1).mean()
            value_total = self.loss_weights['kp_distance']*(source_dist_loss+driving_dist_loss)
            loss_values['kp_distance'] = value_total
        if self.loss_weights['kp_prior']:
            bz,num_kp,kp_dim = kp_source['value'].shape
            sk = kp_source['value'].unsqueeze(2)-kp_source['value'].unsqueeze(1)
            dk = kp_driving['value'].unsqueeze(2)-kp_driving['value'].unsqueeze(1)
            dis_loss = torch.relu(0.1-torch.sqrt((sk*sk).sum(-1)+1e-8))+torch.relu(0.1-torch.sqrt((dk*dk).sum(-1)+1e-8))
            bs,nk,_=kp_source['value'].shape
            scoor_depth = F.grid_sample(depth_source,kp_source['value'].view(bs,1,nk,-1))
            dcoor_depth = F.grid_sample(depth_driving,kp_driving['value'].view(bs,1,nk,-1))
            sd_loss = torch.abs(scoor_depth.mean(-1,keepdim=True) - kp_source['value'].view(bs,1,nk,-1)).mean()
            dd_loss = torch.abs(dcoor_depth.mean(-1,keepdim=True) - kp_driving['value'].view(bs,1,nk,-1)).mean()
            value_total = self.loss_weights['kp_distance']*(dis_loss+sd_loss+dd_loss)
            loss_values['kp_distance'] = value_total


        if self.loss_weights['kp_scale']:
            bz,num_kp,kp_dim = kp_source['value'].shape
            if self.opt.rgbd:
                outputs = self.depth_decoder(self.depth_encoder(generated['prediction']))
                depth_pred = outputs[("disp", 0)]
                pred = torch.cat((generated['prediction'],depth_pred),1)
                kp_pred = self.kp_extractor(pred)
            elif self.opt.use_depth:
                outputs = self.depth_decoder(self.depth_encoder(generated['prediction']))
                depth_pred = outputs[("disp", 0)]
                kp_pred = self.kp_extractor(depth_pred)
            else:
                kp_pred = self.kp_extractor(generated['prediction'])

            pred_mean = kp_pred['value'].mean(1,keepdim=True)
            driving_mean = kp_driving['value'].mean(1,keepdim=True)
            pk = kp_source['value']-pred_mean
            dk = kp_driving['value']- driving_mean
            pred_dist_loss = torch.sqrt((pk*pk).sum(-1)+1e-8)
            driving_dist_loss = torch.sqrt((dk*dk).sum(-1)+1e-8)
            scale_vec = driving_dist_loss/pred_dist_loss
            bz,n = scale_vec.shape
            value = torch.abs(scale_vec[:,:n-1]-scale_vec[:,1:]).mean()
            value_total = self.loss_weights['kp_scale']*value
            loss_values['kp_scale'] = value_total
        if self.loss_weights['depth_constraint']:
            bz,num_kp,kp_dim = kp_source['value'].shape
            outputs = self.depth_decoder(self.depth_encoder(generated['prediction']))
            depth_pred = outputs[("disp", 0)]
            value_total = self.loss_weights['depth_constraint']*torch.abs(depth_driving-depth_pred).mean()
            loss_values['depth_constraint'] = value_total
        return loss_values, generated



class DiscriminatorFullModel(torch.nn.Module):
    """
    Merge all discriminator related updates into single model for better multi-gpu usage
    """

    def __init__(self, kp_extractor, generator, discriminator, train_params):
        super(DiscriminatorFullModel, self).__init__()
        self.kp_extractor = kp_extractor
        self.generator = generator
        self.discriminator = discriminator
        self.train_params = train_params
        self.scales = self.discriminator.module.scales
        self.pyramid = ImagePyramide(self.scales, generator.module.num_channels)
        if torch.cuda.is_available():
            self.pyramid = self.pyramid.cuda()

        self.loss_weights = train_params['loss_weights']

    def forward(self, x, generated):
        pyramide_real = self.pyramid(x['driving'])
        pyramide_generated = self.pyramid(generated['prediction'].detach())

        kp_driving = generated['kp_driving']
        discriminator_maps_generated = self.discriminator(pyramide_generated, kp=detach_kp(kp_driving))
        discriminator_maps_real = self.discriminator(pyramide_real, kp=detach_kp(kp_driving))

        loss_values = {}
        value_total = 0
        for scale in self.scales:
            key = 'prediction_map_%s' % scale
            value = (1 - discriminator_maps_real[key]) ** 2 + discriminator_maps_generated[key] ** 2
            value_total += self.loss_weights['discriminator_gan'] * value.mean()
        loss_values['disc_gan'] = value_total

        return loss_values