Guspfc commited on
Commit
40f5c8f
1 Parent(s): 8873314

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +74 -0
  2. requirements.txt +10 -0
app.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoProcessor, AutoModelForCausalLM, MarianMTModel, MarianTokenizer
3
+ from PIL import Image
4
+ import torch
5
+ from gtts import gTTS
6
+ import os
7
+
8
+ # Funções auxiliares
9
+ def prepare_image(image_path):
10
+ image = Image.open(image_path).convert("RGB")
11
+ inputs = processor(images=image, return_tensors="pt").to(device)
12
+ return image, inputs.pixel_values
13
+
14
+ def generate_caption(pixel_values):
15
+ model.eval()
16
+ with torch.no_grad():
17
+ generated_ids = model.generate(
18
+ pixel_values=pixel_values,
19
+ max_length=50,
20
+ num_beams=4,
21
+ early_stopping=True,
22
+ no_repeat_ngram_size=2
23
+ )
24
+ return processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
25
+
26
+ def translate_to_portuguese(text):
27
+ inputs = translation_tokenizer(text, return_tensors="pt", truncation=True).to(device)
28
+ translated_ids = translation_model.generate(inputs["input_ids"], max_length=50, num_beams=4, early_stopping=True)
29
+ return translation_tokenizer.batch_decode(translated_ids, skip_special_tokens=True)[0]
30
+
31
+ def text_to_speech_gtts(text, lang='pt'):
32
+ tts = gTTS(text=text, lang=lang)
33
+ tts.save("output.mp3")
34
+ return "output.mp3"
35
+
36
+ # Carregar os modelos
37
+ processor = AutoProcessor.from_pretrained("Guspfc/git-base-captioning")
38
+ model = AutoModelForCausalLM.from_pretrained("Guspfc/git-base-captioning")
39
+ translation_model_name = 'Helsinki-NLP/opus-mt-tc-big-en-pt'
40
+ translation_tokenizer = MarianTokenizer.from_pretrained(translation_model_name)
41
+ translation_model = MarianMTModel.from_pretrained(translation_model_name)
42
+
43
+ # Configurar o dispositivo (GPU ou CPU)
44
+ device = "cuda" if torch.cuda.is_available() else "cpu"
45
+ model.to(device)
46
+ translation_model.to(device)
47
+
48
+ # Função principal para processar a imagem e gerar a voz
49
+ def process_image(image):
50
+ _, pixel_values = prepare_image(image)
51
+ caption_en = generate_caption(pixel_values)
52
+ caption_pt = translate_to_portuguese(caption_en)
53
+ audio_file = text_to_speech_gtts(caption_pt)
54
+ return caption_pt, audio_file
55
+
56
+ # Caminhos para as imagens de exemplo (supondo que estejam no mesmo diretório que o script)
57
+ example_image_paths = [
58
+ "example1.png",
59
+ "example2.png",
60
+ "example3.png"
61
+ ]
62
+
63
+ # Interface Gradio
64
+ iface = gr.Interface(
65
+ fn=process_image,
66
+ inputs=gr.Image(type="filepath"),
67
+ outputs=[gr.Textbox(), gr.Audio(type="filepath")],
68
+ examples=example_image_paths,
69
+ title="Image to Voice",
70
+ description="Gera uma descrição em português e a converte em voz a partir de uma imagem."
71
+ )
72
+
73
+ if __name__ == "__main__":
74
+ iface.launch()
requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ transformers
2
+ datasets
3
+ sentencepiece
4
+ gtts
5
+ IPython
6
+ gradio
7
+ torch
8
+ sacremoses
9
+ Pillow
10
+ huggingface_hub