anime-colorization / scripts /pixel_guide_sample.py
HighCWu's picture
First model version
052c05b
"""
Generate a large batch of samples from a super resolution model, given a batch
of samples from a regular model from image_sample.py.
"""
import argparse
import os
import blobfile as bf
import numpy as np
import torch as th
import torch.distributed as dist
from torchvision import utils
from pixel_guide_diffusion import dist_util, logger
from pixel_guide_diffusion.image_datasets import load_data
from pixel_guide_diffusion.script_util import (
pg_model_and_diffusion_defaults,
pg_create_model_and_diffusion,
args_to_dict,
add_dict_to_argparser,
)
def main():
args = create_argparser().parse_args()
dist_util.setup_dist()
logger.configure()
logger.log("creating model...")
model, diffusion = pg_create_model_and_diffusion(
**args_to_dict(args, pg_model_and_diffusion_defaults().keys())
)
model.load_state_dict(
dist_util.load_state_dict(args.model_path, map_location="cpu")
)
model.to(dist_util.dev())
model.eval()
logger.log("creating data loader...")
data = load_data(
data_dir=args.data_dir,
batch_size=args.batch_size,
image_size=args.image_size,
class_cond=args.class_cond,
guide_dir=args.guide_dir,
guide_size=args.guide_size,
deterministic=True,
)
logger.log("creating samples...")
os.makedirs('sample', exist_ok=True)
i = 0
while i * args.batch_size < args.num_samples:
if dist.get_rank() == 0:
target, model_kwargs = next(data)
target = target.to(dist_util.dev())
model_kwargs = {k: v.to(dist_util.dev()) for k, v in model_kwargs.items()}
with th.no_grad():
sample_fn = (
diffusion.p_sample_loop if not args.use_ddim else diffusion.ddim_sample_loop
)
sample = sample_fn(
model,
(args.batch_size, 3, args.image_size, args.image_size),
clip_denoised=args.clip_denoised,
model_kwargs=model_kwargs,
)
guide = model_kwargs["guide"]
h, w = guide.shape[2:]
guide = guide.clamp(-1,1).repeat(1,3,1,1)
sample = th.nn.functional.interpolate(sample.clamp(-1,1), size=(h, w))
target = th.nn.functional.interpolate(target.clamp(-1,1), size=(h, w))
images = th.cat([guide, sample, target], 0)
utils.save_image(
images,
f"sample/{str(i).zfill(6)}.png",
nrow=args.batch_size,
normalize=True,
range=(-1, 1),
)
i += 1
logger.log(f"created {i * args.batch_size} samples")
logger.log("sampling complete")
def create_argparser():
defaults = dict(
data_dir="",
guide_dir="",
clip_denoised=True,
num_samples=100,
batch_size=4,
use_ddim=False,
base_samples="",
model_path="",
)
defaults.update(pg_model_and_diffusion_defaults())
parser = argparse.ArgumentParser()
add_dict_to_argparser(parser, defaults)
return parser
if __name__ == "__main__":
main()