NPK_Predictor / app.py
GodfreyOwino's picture
Update app.py
b6fa28f verified
raw
history blame
1.92 kB
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import joblib
import numpy as np
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Allows all origins
allow_credentials=True,
allow_methods=["*"], # Allows all methods
allow_headers=["*"], # Allows all headers
)
# Loading the model and label encoder
model = joblib.load("soil_npk_joblib_model.joblib")
le = joblib.load("label_encoder.joblib")
class InputData(BaseModel):
crop_name: str
target_yield: float
field_size: float
ph: float
organic_carbon: float
nitrogen: float
phosphorus: float
potassium: float
soil_moisture: float
@app.post("/predict")
async def predict(data: InputData):
try:
input_data = pd.DataFrame({
'crop_name': [data.crop_name],
'target_yield': [data.target_yield],
'field_size': [data.field_size],
'ph': [data.ph],
'organic_carbon': [data.organic_carbon],
'nitrogen': [data.nitrogen],
'phosphorus': [data.phosphorus],
'potassium': [data.potassium],
'soil_moisture': [data.soil_moisture]
})
# Use the encoder to transform the crop_name
input_data['crop_name'] = le.transform(input_data['crop_name'])
prediction = model.predict(input_data)
return {
"nitrogen_need": float(prediction[0][0]),
"phosphorus_need": float(prediction[0][1]),
"potassium_need": float(prediction[0][2]),
"organic_matter_need": float(prediction[0][3]),
"lime_need": float(prediction[0][4])
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/")
async def root():
return {"message": "NPK Needs Prediction API"}