import os os.system('pip install gradio==2.3.5b0') os.system('pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.9.0+${CUDA}.html') import gradio as gr from transformers import pipeline import pandas as pd table = pd.DataFrame() tqa = pipeline(task="table-question-answering", model="google/tapas-base-finetuned-wtq") def chat(message): history = gr.get_state() or [] global table if message.startswith('http'): table = pd.read_csv(message) table = table.astype(str) response = 'thank you to give me a dataset... now you can ask questions about it' elif table.empty: response = 'Hi! You still have not given me the url of a dataset in csv format. Send a url of a csv file and then ask as many questions as you want about it. If you want to talk about another dataset, just send a new link.' else: response = tqa(table=table, query=message)["answer"] history.append((message, response)) gr.set_state(history) html = "