File size: 2,756 Bytes
f497e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
547eaa5
f497e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56facd8
f497e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import cv2
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import streamlit as st
import numpy as np
import mediapipe as mp

# Initialize MediaPipe Pose
mp_pose = mp.solutions.pose
pose = mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5)

# Initialize MediaPipe Drawing
mp_drawing = mp.solutions.drawing_utils

# Load the Hugging Face model and tokenizer
model_name = "dima806/yoga_pose_image_classification"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Yoga Pose Classification Function using Hugging Face model
def classify_pose(landmarks):
    # Prepare input for the model
    landmark_list = [landmark.x for landmark in landmarks] + [landmark.y for landmark in landmarks] + [landmark.z for landmark in landmarks]
    inputs = tokenizer(landmark_list, return_tensors="pt")
    
    # Get model predictions
    outputs = model(**inputs)
    predictions = torch.argmax(outputs.logits, dim=1)
    
    # Map predictions to pose names (adjust this mapping according to your model)
    pose_names = ["Mountain Pose", "Tree Pose", "Warrior Pose", "Unknown Pose"]
    return pose_names[predictions.item()]
        
def main():
    st.title("Live Yoga Pose Detection with Hugging Face")
    
    # Start video capture
    cap = cv2.VideoCapture(0)
    
    stframe = st.empty()
    
    while cap.isOpened():
        success, image = cap.read()
        if not success:
            st.error("Ignoring empty camera frame.")
            continue
        
        # Convert the BGR image to RGB
        image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        
        # Process the image and detect the pose
        results = pose.process(image_rgb)
        
        # Draw the pose annotation on the image
        if results.pose_landmarks:
            mp_drawing.draw_landmarks(
                image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS)
            
            # Classify the detected pose
            landmarks = results.pose_landmarks.landmark
            pose_name = classify_pose(landmarks)
            
            # Display the classification result on the image
            cv2.putText(image, pose_name, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2, cv2.LINE_AA)
        
        # Convert the image back to BGR for OpenCV
        image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
        
        # Display the image in Streamlit
        stframe.image(image_bgr, channels='BGR')
        
        # Break the loop if 'q' is pressed
        if cv2.waitKey(5) & 0xFF == ord('q'):
            break
    
    cap.release()
    cv2.destroyAllWindows()

if _name_ == "_main_":
    main()