import os
import sys
import html
import glob
import uuid
import hashlib
import requests
from tqdm import tqdm
os.system("git clone https://github.com/FrozenBurning/SceneDreamer.git")
os.system("cp -r SceneDreamer/* ./")
os.system("bash install.sh")
import os
import torch
import torch.nn as nn
import importlib
import argparse
from imaginaire.config import Config
from imaginaire.utils.cudnn import init_cudnn
import gradio as gr
from PIL import Image
class WrappedModel(nn.Module):
r"""Dummy wrapping the module.
"""
def __init__(self, module):
super(WrappedModel, self).__init__()
self.module = module
def forward(self, *args, **kwargs):
r"""PyTorch module forward function overload."""
return self.module(*args, **kwargs)
def parse_args():
parser = argparse.ArgumentParser(description='Training')
parser.add_argument('--config', type=str, default='./configs/scenedreamer_inference.yaml', help='Path to the training config file.')
parser.add_argument('--checkpoint', default='./scenedreamer_released.pt',
help='Checkpoint path.')
parser.add_argument('--output_dir', type=str, default='./test/',
help='Location to save the image outputs')
parser.add_argument('--seed', type=int, default=8888,
help='Random seed.')
args = parser.parse_args()
return args
args = parse_args()
cfg = Config(args.config)
# Initialize cudnn.
init_cudnn(cfg.cudnn.deterministic, cfg.cudnn.benchmark)
# Initialize data loaders and models.
lib_G = importlib.import_module(cfg.gen.type)
net_G = lib_G.Generator(cfg.gen, cfg.data)
net_G = net_G.to('cuda')
net_G = WrappedModel(net_G)
if args.checkpoint == '':
raise NotImplementedError("No checkpoint is provided for inference!")
# Load checkpoint.
# trainer.load_checkpoint(cfg, args.checkpoint)
checkpoint = torch.load(args.checkpoint, map_location='cpu')
net_G.load_state_dict(checkpoint['net_G'])
# Do inference.
net_G = net_G.module
net_G.eval()
for name, param in net_G.named_parameters():
param.requires_grad = False
torch.cuda.empty_cache()
world_dir = os.path.join(args.output_dir)
os.makedirs(world_dir, exist_ok=True)
def get_bev(seed):
print('[PCGGenerator] Generating BEV scene representation...')
os.system('python terrain_generator.py --size {} --seed {} --outdir {}'.format(net_G.voxel.sample_size, seed, world_dir))
heightmap_path = os.path.join(world_dir, 'heightmap.png')
semantic_path = os.path.join(world_dir, 'colormap.png')
heightmap = Image.open(heightmap_path)
semantic = Image.open(semantic_path)
return semantic, heightmap
def get_video(seed, num_frames, reso_h, reso_w):
device = torch.device('cuda')
rng_cuda = torch.Generator(device=device)
rng_cuda = rng_cuda.manual_seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
net_G.voxel.next_world(device, world_dir, checkpoint)
cam_mode = cfg.inference_args.camera_mode
cfg.inference_args.cam_maxstep = num_frames
cfg.inference_args.resolution_hw = [reso_h, reso_w]
current_outdir = os.path.join(world_dir, 'camera_{:02d}'.format(cam_mode))
os.makedirs(current_outdir, exist_ok=True)
z = torch.empty(1, net_G.style_dims, dtype=torch.float32, device=device)
z.normal_(generator=rng_cuda)
net_G.inference_givenstyle(z, current_outdir, **vars(cfg.inference_args))
return os.path.join(current_outdir, 'rgb_render.mp4')
markdown=f'''
# SceneDreamer: Unbounded 3D Scene Generation from 2D Image Collections
Authored by Zhaoxi Chen, Guangcong Wang, Ziwei Liu
### Useful links:
- [Official Github Repo](https://github.com/FrozenBurning/SceneDreamer)
- [Project Page](https://scene-dreamer.github.io/)
- [arXiv Link](https://arxiv.org/abs/2302.01330)
Licensed under the S-Lab License.
We offer a sampled scene whose BEVs are shown on the right. You can also use the button "Generate BEV" to randomly sample a new 3D world represented by a height map and a semantic map. But it requires a long time.
To render video, push the button "Render" to generate a camera trajectory flying through the world. You can specify rendering options as shown below!
'''
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
gr.Markdown(markdown)
with gr.Column():
with gr.Row():
with gr.Column():
semantic = gr.Image(value='./test/colormap.png',type="pil", shape=(512, 512))
with gr.Column():
height = gr.Image(value='./test/heightmap.png', type="pil", shape=(512, 512))
with gr.Row():
# with gr.Column():
# image = gr.Image(type='pil', shape(540, 960))
with gr.Column():
video = gr.Video()
with gr.Row():
num_frames = gr.Slider(minimum=10, maximum=200, value=20, step=1, label='Number of rendered frames')
user_seed = gr.Slider(minimum=0, maximum=999999, value=8888, step=1, label='Random seed')
resolution_h = gr.Slider(minimum=256, maximum=2160, value=270, step=1, label='Height of rendered image')
resolution_w = gr.Slider(minimum=256, maximum=3840, value=480, step=1, label='Width of rendered image')
with gr.Row():
btn = gr.Button(value="Generate BEV")
btn_2=gr.Button(value="Render")
btn.click(get_bev,[user_seed],[semantic, height])
btn_2.click(get_video,[user_seed, num_frames, resolution_h, resolution_w], [video])
demo.launch(debug=True)