Spaces:
Running
Running
import random | |
import gradio as gr | |
import numpy as np | |
import spaces | |
import torch | |
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler | |
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast | |
from gradio_imagefeed import ImageFeed | |
dtype = torch.bfloat16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
LICENSE=f"""# Better UI for FLUX.1 [dev] [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)]""" | |
CSS = "#col-container { margin: 0 auto; max-width: 900px; }" | |
EXAMPLES = ["a tiny elephant hatching from a turtle egg in the palm of a human hand, highly detailed textures, close-up"] | |
def infer(prompt, seed=99999, randomize_seed=True, width=896, height=1152, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt = prompt, | |
width = width, | |
height = height, | |
num_inference_steps = num_inference_steps, | |
generator = generator, | |
guidance_scale=guidance_scale).images[0] | |
yield image, seed | |
with gr.Blocks(css=CSS) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(LICENSE) | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=5, | |
placeholder="Prompt", | |
container=False) | |
run_button = gr.Button("Run", scale=0) | |
result = ImageFeed(label="Result", show_label=False) | |
# result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=random.randint(0, MAX_SEED)) | |
randomize_seed = gr.Checkbox(label="Randomize", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=896) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1152) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=1, | |
maximum=15, | |
step=0.1, | |
value=3) | |
num_inference_steps = gr.Slider( | |
label="Inference Steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=28) | |
gr.Examples( | |
examples=EXAMPLES, | |
fn=infer, | |
inputs=[prompt], | |
outputs=[result, seed], | |
cache_examples="lazy" | |
) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn = infer, | |
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs = [result, seed] | |
) | |
demo.launch() |