Spaces:
Runtime error
Runtime error
Ffftdtd5dtft
commited on
Commit
•
1c1ba7e
1
Parent(s):
1811735
Update app.py
Browse files
app.py
CHANGED
@@ -4,12 +4,12 @@ import redis
|
|
4 |
import torch
|
5 |
import scipy
|
6 |
from transformers import (
|
7 |
-
pipeline, AutoTokenizer, AutoModelForCausalLM, AutoProcessor,
|
8 |
-
MusicgenForConditionalGeneration, WhisperProcessor, WhisperForConditionalGeneration,
|
9 |
MarianMTModel, MarianTokenizer, BartTokenizer, BartForConditionalGeneration
|
10 |
)
|
11 |
from diffusers import (
|
12 |
-
FluxPipeline, StableDiffusionPipeline, DPMSolverMultistepScheduler,
|
13 |
StableDiffusionImg2ImgPipeline, DiffusionPipeline
|
14 |
)
|
15 |
from diffusers.utils import export_to_video
|
@@ -22,16 +22,18 @@ import multiprocessing
|
|
22 |
load_dotenv()
|
23 |
|
24 |
redis_client = redis.Redis(
|
25 |
-
host=os.getenv('REDIS_HOST'),
|
26 |
-
port=os.getenv('REDIS_PORT'),
|
27 |
password=os.getenv("REDIS_PASSWORD")
|
28 |
)
|
29 |
|
30 |
huggingface_token = os.getenv('HF_TOKEN')
|
31 |
|
|
|
32 |
def generate_unique_id():
|
33 |
return str(uuid.uuid4())
|
34 |
|
|
|
35 |
def store_special_tokens(tokenizer, model_name):
|
36 |
special_tokens = {
|
37 |
'pad_token': tokenizer.pad_token,
|
@@ -45,6 +47,7 @@ def store_special_tokens(tokenizer, model_name):
|
|
45 |
}
|
46 |
redis_client.hmset(f"tokenizer_special_tokens:{model_name}", special_tokens)
|
47 |
|
|
|
48 |
def load_special_tokens(tokenizer, model_name):
|
49 |
special_tokens = redis_client.hgetall(f"tokenizer_special_tokens:{model_name}")
|
50 |
if special_tokens:
|
@@ -57,6 +60,7 @@ def load_special_tokens(tokenizer, model_name):
|
|
57 |
tokenizer.bos_token = special_tokens.get('bos_token', '').decode("utf-8")
|
58 |
tokenizer.bos_token_id = int(special_tokens.get('bos_token_id', -1))
|
59 |
|
|
|
60 |
def train_and_store_transformers_model(model_name, data):
|
61 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
62 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
@@ -69,6 +73,7 @@ def train_and_store_transformers_model(model_name, data):
|
|
69 |
tokenizer_data = tokenizer.save_pretrained("transformers_tokenizer")
|
70 |
redis_client.set(f"transformers_tokenizer:{model_name}", tokenizer_data)
|
71 |
|
|
|
72 |
def generate_transformers_response_from_redis(model_name, prompt):
|
73 |
unique_id = generate_unique_id()
|
74 |
model_data = redis_client.get(f"transformers_model:{model_name}:state_dict")
|
@@ -85,6 +90,7 @@ def generate_transformers_response_from_redis(model_name, prompt):
|
|
85 |
redis_client.set(f"transformers_response:{unique_id}", response)
|
86 |
return response
|
87 |
|
|
|
88 |
def train_and_store_diffusers_model(model_name, data):
|
89 |
pipe = FluxPipeline.from_pretrained(model_name, torch_dtype=torch.bfloat16)
|
90 |
pipe.enable_model_cpu_offload()
|
@@ -94,6 +100,7 @@ def train_and_store_diffusers_model(model_name, data):
|
|
94 |
model_data = f.read()
|
95 |
redis_client.set(f"diffusers_model:{model_name}", model_data)
|
96 |
|
|
|
97 |
def generate_diffusers_image_from_redis(model_name, prompt):
|
98 |
unique_id = generate_unique_id()
|
99 |
model_data = redis_client.get(f"diffusers_model:{model_name}")
|
@@ -101,12 +108,14 @@ def generate_diffusers_image_from_redis(model_name, prompt):
|
|
101 |
f.write(model_data)
|
102 |
pipe = FluxPipeline.from_pretrained("diffusers_model", torch_dtype=torch.bfloat16)
|
103 |
pipe.enable_model_cpu_offload()
|
104 |
-
image = pipe(prompt, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256,
|
|
|
105 |
image_path = f"images/diffusers_{unique_id}.png"
|
106 |
image.save(image_path)
|
107 |
redis_client.set(f"diffusers_image:{unique_id}", image_path)
|
108 |
return image
|
109 |
|
|
|
110 |
def train_and_store_musicgen_model(model_name, data):
|
111 |
processor = AutoProcessor.from_pretrained(model_name)
|
112 |
model = MusicgenForConditionalGeneration.from_pretrained(model_name)
|
@@ -118,6 +127,7 @@ def train_and_store_musicgen_model(model_name, data):
|
|
118 |
processor_data = processor.save_pretrained("musicgen_processor")
|
119 |
redis_client.set(f"musicgen_processor:{model_name}", processor_data)
|
120 |
|
|
|
121 |
def generate_musicgen_audio_from_redis(model_name, text_prompts):
|
122 |
unique_id = generate_unique_id()
|
123 |
model_data = redis_client.get(f"musicgen_model:{model_name}:state_dict")
|
@@ -134,6 +144,7 @@ def generate_musicgen_audio_from_redis(model_name, text_prompts):
|
|
134 |
redis_client.set(f"musicgen_audio:{unique_id}", audio_path)
|
135 |
return audio_path
|
136 |
|
|
|
137 |
def train_and_store_stable_diffusion_model(model_name, data):
|
138 |
pipe = StableDiffusionPipeline.from_pretrained(model_name, torch_dtype=torch.float16)
|
139 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
@@ -144,6 +155,7 @@ def train_and_store_stable_diffusion_model(model_name, data):
|
|
144 |
model_data = f.read()
|
145 |
redis_client.set(f"stable_diffusion_model:{model_name}", model_data)
|
146 |
|
|
|
147 |
def generate_stable_diffusion_image_from_redis(model_name, prompt):
|
148 |
unique_id = generate_unique_id()
|
149 |
model_data = redis_client.get(f"stable_diffusion_model:{model_name}")
|
@@ -158,6 +170,7 @@ def generate_stable_diffusion_image_from_redis(model_name, prompt):
|
|
158 |
redis_client.set(f"stable_diffusion_image:{unique_id}", image_path)
|
159 |
return image
|
160 |
|
|
|
161 |
def train_and_store_img2img_model(model_name, data):
|
162 |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_name, torch_dtype=torch.float16)
|
163 |
pipe = pipe.to("cuda")
|
@@ -167,6 +180,7 @@ def train_and_store_img2img_model(model_name, data):
|
|
167 |
model_data = f.read()
|
168 |
redis_client.set(f"img2img_model:{model_name}", model_data)
|
169 |
|
|
|
170 |
def generate_img2img_from_redis(model_name, init_image, prompt, strength=0.75):
|
171 |
unique_id = generate_unique_id()
|
172 |
model_data = redis_client.get(f"img2img_model:{model_name}")
|
@@ -181,6 +195,7 @@ def generate_img2img_from_redis(model_name, init_image, prompt, strength=0.75):
|
|
181 |
redis_client.set(f"img2img_image:{unique_id}", image_path)
|
182 |
return image
|
183 |
|
|
|
184 |
def train_and_store_marianmt_model(model_name, data):
|
185 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
186 |
model = MarianMTModel.from_pretrained(model_name)
|
@@ -192,6 +207,7 @@ def train_and_store_marianmt_model(model_name, data):
|
|
192 |
tokenizer_data = tokenizer.save_pretrained("marianmt_tokenizer")
|
193 |
redis_client.set(f"marianmt_tokenizer:{model_name}", tokenizer_data)
|
194 |
|
|
|
195 |
def translate_text_from_redis(model_name, text, src_lang, tgt_lang):
|
196 |
unique_id = generate_unique_id()
|
197 |
model_data = redis_client.get(f"marianmt_model:{model_name}:state_dict")
|
@@ -207,6 +223,7 @@ def translate_text_from_redis(model_name, text, src_lang, tgt_lang):
|
|
207 |
redis_client.set(f"marianmt_translation:{unique_id}", translation)
|
208 |
return translation
|
209 |
|
|
|
210 |
def train_and_store_bart_model(model_name, data):
|
211 |
tokenizer = BartTokenizer.from_pretrained(model_name)
|
212 |
model = BartForConditionalGeneration.from_pretrained(model_name)
|
@@ -218,6 +235,7 @@ def train_and_store_bart_model(model_name, data):
|
|
218 |
tokenizer_data = tokenizer.save_pretrained("bart_tokenizer")
|
219 |
redis_client.set(f"bart_tokenizer:{model_name}", tokenizer_data)
|
220 |
|
|
|
221 |
def summarize_text_from_redis(model_name, text):
|
222 |
unique_id = generate_unique_id()
|
223 |
model_data = redis_client.get(f"bart_model:{model_name}:state_dict")
|
@@ -234,6 +252,7 @@ def summarize_text_from_redis(model_name, text):
|
|
234 |
redis_client.set(f"bart_summary:{unique_id}", summary)
|
235 |
return summary
|
236 |
|
|
|
237 |
def auto_train_and_store(model_name, task, data):
|
238 |
if task == "text-generation":
|
239 |
train_and_store_transformers_model(model_name, data)
|
@@ -250,6 +269,7 @@ def auto_train_and_store(model_name, task, data):
|
|
250 |
elif task == "summarization":
|
251 |
train_and_store_bart_model(model_name, data)
|
252 |
|
|
|
253 |
def transcribe_audio_from_redis(audio_file):
|
254 |
audio_file_path = "audio_file.wav"
|
255 |
with open(audio_file_path, "wb") as f:
|
@@ -263,6 +283,7 @@ def transcribe_audio_from_redis(audio_file):
|
|
263 |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
264 |
return transcription[0]
|
265 |
|
|
|
266 |
def generate_image_from_redis(model_name, prompt, model_type):
|
267 |
if model_type == "diffusers":
|
268 |
image = generate_diffusers_image_from_redis(model_name, prompt)
|
@@ -272,8 +293,10 @@ def generate_image_from_redis(model_name, prompt, model_type):
|
|
272 |
image = generate_img2img_from_redis(model_name, "init_image.png", prompt)
|
273 |
return image
|
274 |
|
|
|
275 |
def generate_video_from_redis(prompt):
|
276 |
-
pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16,
|
|
|
277 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
278 |
pipe.enable_model_cpu_offload()
|
279 |
video_frames = pipe(prompt, num_inference_steps=25).frames
|
@@ -282,6 +305,7 @@ def generate_video_from_redis(prompt):
|
|
282 |
redis_client.set(f"video_{unique_id}", video_path)
|
283 |
return video_path
|
284 |
|
|
|
285 |
def generate_random_response(prompts, generator):
|
286 |
responses = []
|
287 |
for prompt in prompts:
|
@@ -289,16 +313,19 @@ def generate_random_response(prompts, generator):
|
|
289 |
responses.append(response)
|
290 |
return responses
|
291 |
|
|
|
292 |
def process_parallel(tasks):
|
293 |
with multiprocessing.Pool() as pool:
|
294 |
results = pool.map(lambda task: task(), tasks)
|
295 |
return results
|
296 |
|
|
|
297 |
def generate_response_from_prompt(prompt, model_name="google/flan-t5-xl"):
|
298 |
generator = pipeline('text-generation', model=model_name, tokenizer=model_name)
|
299 |
responses = generate_random_response([prompt], generator)
|
300 |
return responses[0]
|
301 |
|
|
|
302 |
def generate_image_from_prompt(prompt, image_type, model_name="CompVis/stable-diffusion-v1-4"):
|
303 |
if image_type == "diffusers":
|
304 |
image = generate_diffusers_image_from_redis(model_name, prompt)
|
@@ -308,65 +335,98 @@ def generate_image_from_prompt(prompt, image_type, model_name="CompVis/stable-di
|
|
308 |
image = generate_img2img_from_redis(model_name, "init_image.png", prompt)
|
309 |
return image
|
310 |
|
|
|
311 |
def gradio_app():
|
312 |
with gr.Blocks() as app:
|
313 |
-
gr.Markdown(
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
gr.
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
gr.
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
gr.
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
368 |
|
369 |
app.launch()
|
370 |
|
|
|
371 |
if __name__ == "__main__":
|
372 |
gradio_app()
|
|
|
4 |
import torch
|
5 |
import scipy
|
6 |
from transformers import (
|
7 |
+
pipeline, AutoTokenizer, AutoModelForCausalLM, AutoProcessor,
|
8 |
+
MusicgenForConditionalGeneration, WhisperProcessor, WhisperForConditionalGeneration,
|
9 |
MarianMTModel, MarianTokenizer, BartTokenizer, BartForConditionalGeneration
|
10 |
)
|
11 |
from diffusers import (
|
12 |
+
FluxPipeline, StableDiffusionPipeline, DPMSolverMultistepScheduler,
|
13 |
StableDiffusionImg2ImgPipeline, DiffusionPipeline
|
14 |
)
|
15 |
from diffusers.utils import export_to_video
|
|
|
22 |
load_dotenv()
|
23 |
|
24 |
redis_client = redis.Redis(
|
25 |
+
host=os.getenv('REDIS_HOST'),
|
26 |
+
port=os.getenv('REDIS_PORT'),
|
27 |
password=os.getenv("REDIS_PASSWORD")
|
28 |
)
|
29 |
|
30 |
huggingface_token = os.getenv('HF_TOKEN')
|
31 |
|
32 |
+
|
33 |
def generate_unique_id():
|
34 |
return str(uuid.uuid4())
|
35 |
|
36 |
+
|
37 |
def store_special_tokens(tokenizer, model_name):
|
38 |
special_tokens = {
|
39 |
'pad_token': tokenizer.pad_token,
|
|
|
47 |
}
|
48 |
redis_client.hmset(f"tokenizer_special_tokens:{model_name}", special_tokens)
|
49 |
|
50 |
+
|
51 |
def load_special_tokens(tokenizer, model_name):
|
52 |
special_tokens = redis_client.hgetall(f"tokenizer_special_tokens:{model_name}")
|
53 |
if special_tokens:
|
|
|
60 |
tokenizer.bos_token = special_tokens.get('bos_token', '').decode("utf-8")
|
61 |
tokenizer.bos_token_id = int(special_tokens.get('bos_token_id', -1))
|
62 |
|
63 |
+
|
64 |
def train_and_store_transformers_model(model_name, data):
|
65 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
66 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
73 |
tokenizer_data = tokenizer.save_pretrained("transformers_tokenizer")
|
74 |
redis_client.set(f"transformers_tokenizer:{model_name}", tokenizer_data)
|
75 |
|
76 |
+
|
77 |
def generate_transformers_response_from_redis(model_name, prompt):
|
78 |
unique_id = generate_unique_id()
|
79 |
model_data = redis_client.get(f"transformers_model:{model_name}:state_dict")
|
|
|
90 |
redis_client.set(f"transformers_response:{unique_id}", response)
|
91 |
return response
|
92 |
|
93 |
+
|
94 |
def train_and_store_diffusers_model(model_name, data):
|
95 |
pipe = FluxPipeline.from_pretrained(model_name, torch_dtype=torch.bfloat16)
|
96 |
pipe.enable_model_cpu_offload()
|
|
|
100 |
model_data = f.read()
|
101 |
redis_client.set(f"diffusers_model:{model_name}", model_data)
|
102 |
|
103 |
+
|
104 |
def generate_diffusers_image_from_redis(model_name, prompt):
|
105 |
unique_id = generate_unique_id()
|
106 |
model_data = redis_client.get(f"diffusers_model:{model_name}")
|
|
|
108 |
f.write(model_data)
|
109 |
pipe = FluxPipeline.from_pretrained("diffusers_model", torch_dtype=torch.bfloat16)
|
110 |
pipe.enable_model_cpu_offload()
|
111 |
+
image = pipe(prompt, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256,
|
112 |
+
generator=torch.Generator("cpu").manual_seed(0)).images[0]
|
113 |
image_path = f"images/diffusers_{unique_id}.png"
|
114 |
image.save(image_path)
|
115 |
redis_client.set(f"diffusers_image:{unique_id}", image_path)
|
116 |
return image
|
117 |
|
118 |
+
|
119 |
def train_and_store_musicgen_model(model_name, data):
|
120 |
processor = AutoProcessor.from_pretrained(model_name)
|
121 |
model = MusicgenForConditionalGeneration.from_pretrained(model_name)
|
|
|
127 |
processor_data = processor.save_pretrained("musicgen_processor")
|
128 |
redis_client.set(f"musicgen_processor:{model_name}", processor_data)
|
129 |
|
130 |
+
|
131 |
def generate_musicgen_audio_from_redis(model_name, text_prompts):
|
132 |
unique_id = generate_unique_id()
|
133 |
model_data = redis_client.get(f"musicgen_model:{model_name}:state_dict")
|
|
|
144 |
redis_client.set(f"musicgen_audio:{unique_id}", audio_path)
|
145 |
return audio_path
|
146 |
|
147 |
+
|
148 |
def train_and_store_stable_diffusion_model(model_name, data):
|
149 |
pipe = StableDiffusionPipeline.from_pretrained(model_name, torch_dtype=torch.float16)
|
150 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
|
|
155 |
model_data = f.read()
|
156 |
redis_client.set(f"stable_diffusion_model:{model_name}", model_data)
|
157 |
|
158 |
+
|
159 |
def generate_stable_diffusion_image_from_redis(model_name, prompt):
|
160 |
unique_id = generate_unique_id()
|
161 |
model_data = redis_client.get(f"stable_diffusion_model:{model_name}")
|
|
|
170 |
redis_client.set(f"stable_diffusion_image:{unique_id}", image_path)
|
171 |
return image
|
172 |
|
173 |
+
|
174 |
def train_and_store_img2img_model(model_name, data):
|
175 |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_name, torch_dtype=torch.float16)
|
176 |
pipe = pipe.to("cuda")
|
|
|
180 |
model_data = f.read()
|
181 |
redis_client.set(f"img2img_model:{model_name}", model_data)
|
182 |
|
183 |
+
|
184 |
def generate_img2img_from_redis(model_name, init_image, prompt, strength=0.75):
|
185 |
unique_id = generate_unique_id()
|
186 |
model_data = redis_client.get(f"img2img_model:{model_name}")
|
|
|
195 |
redis_client.set(f"img2img_image:{unique_id}", image_path)
|
196 |
return image
|
197 |
|
198 |
+
|
199 |
def train_and_store_marianmt_model(model_name, data):
|
200 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
201 |
model = MarianMTModel.from_pretrained(model_name)
|
|
|
207 |
tokenizer_data = tokenizer.save_pretrained("marianmt_tokenizer")
|
208 |
redis_client.set(f"marianmt_tokenizer:{model_name}", tokenizer_data)
|
209 |
|
210 |
+
|
211 |
def translate_text_from_redis(model_name, text, src_lang, tgt_lang):
|
212 |
unique_id = generate_unique_id()
|
213 |
model_data = redis_client.get(f"marianmt_model:{model_name}:state_dict")
|
|
|
223 |
redis_client.set(f"marianmt_translation:{unique_id}", translation)
|
224 |
return translation
|
225 |
|
226 |
+
|
227 |
def train_and_store_bart_model(model_name, data):
|
228 |
tokenizer = BartTokenizer.from_pretrained(model_name)
|
229 |
model = BartForConditionalGeneration.from_pretrained(model_name)
|
|
|
235 |
tokenizer_data = tokenizer.save_pretrained("bart_tokenizer")
|
236 |
redis_client.set(f"bart_tokenizer:{model_name}", tokenizer_data)
|
237 |
|
238 |
+
|
239 |
def summarize_text_from_redis(model_name, text):
|
240 |
unique_id = generate_unique_id()
|
241 |
model_data = redis_client.get(f"bart_model:{model_name}:state_dict")
|
|
|
252 |
redis_client.set(f"bart_summary:{unique_id}", summary)
|
253 |
return summary
|
254 |
|
255 |
+
|
256 |
def auto_train_and_store(model_name, task, data):
|
257 |
if task == "text-generation":
|
258 |
train_and_store_transformers_model(model_name, data)
|
|
|
269 |
elif task == "summarization":
|
270 |
train_and_store_bart_model(model_name, data)
|
271 |
|
272 |
+
|
273 |
def transcribe_audio_from_redis(audio_file):
|
274 |
audio_file_path = "audio_file.wav"
|
275 |
with open(audio_file_path, "wb") as f:
|
|
|
283 |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
284 |
return transcription[0]
|
285 |
|
286 |
+
|
287 |
def generate_image_from_redis(model_name, prompt, model_type):
|
288 |
if model_type == "diffusers":
|
289 |
image = generate_diffusers_image_from_redis(model_name, prompt)
|
|
|
293 |
image = generate_img2img_from_redis(model_name, "init_image.png", prompt)
|
294 |
return image
|
295 |
|
296 |
+
|
297 |
def generate_video_from_redis(prompt):
|
298 |
+
pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16,
|
299 |
+
variant="fp16")
|
300 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
301 |
pipe.enable_model_cpu_offload()
|
302 |
video_frames = pipe(prompt, num_inference_steps=25).frames
|
|
|
305 |
redis_client.set(f"video_{unique_id}", video_path)
|
306 |
return video_path
|
307 |
|
308 |
+
|
309 |
def generate_random_response(prompts, generator):
|
310 |
responses = []
|
311 |
for prompt in prompts:
|
|
|
313 |
responses.append(response)
|
314 |
return responses
|
315 |
|
316 |
+
|
317 |
def process_parallel(tasks):
|
318 |
with multiprocessing.Pool() as pool:
|
319 |
results = pool.map(lambda task: task(), tasks)
|
320 |
return results
|
321 |
|
322 |
+
|
323 |
def generate_response_from_prompt(prompt, model_name="google/flan-t5-xl"):
|
324 |
generator = pipeline('text-generation', model=model_name, tokenizer=model_name)
|
325 |
responses = generate_random_response([prompt], generator)
|
326 |
return responses[0]
|
327 |
|
328 |
+
|
329 |
def generate_image_from_prompt(prompt, image_type, model_name="CompVis/stable-diffusion-v1-4"):
|
330 |
if image_type == "diffusers":
|
331 |
image = generate_diffusers_image_from_redis(model_name, prompt)
|
|
|
335 |
image = generate_img2img_from_redis(model_name, "init_image.png", prompt)
|
336 |
return image
|
337 |
|
338 |
+
|
339 |
def gradio_app():
|
340 |
with gr.Blocks() as app:
|
341 |
+
gr.Markdown(
|
342 |
+
"""
|
343 |
+
# IA Generativa con Transformers y Diffusers
|
344 |
+
Explora diferentes modelos de IA para generar texto, imágenes, audio, video y más.
|
345 |
+
"""
|
346 |
+
)
|
347 |
+
|
348 |
+
with gr.Tab("Texto"):
|
349 |
+
with gr.Row():
|
350 |
+
with gr.Column():
|
351 |
+
prompt_text = gr.Textbox(label="Texto de Entrada", placeholder="Ingresa tu prompt de texto aquí...")
|
352 |
+
text_button = gr.Button("Generar Texto", variant="primary")
|
353 |
+
with gr.Column():
|
354 |
+
text_output = gr.Textbox(label="Respuesta")
|
355 |
+
text_button.click(generate_response_from_prompt, inputs=prompt_text, outputs=text_output)
|
356 |
+
|
357 |
+
with gr.Tab("Imagen"):
|
358 |
+
with gr.Row():
|
359 |
+
with gr.Column():
|
360 |
+
prompt_image = gr.Textbox(label="Prompt de Imagen",
|
361 |
+
placeholder="Ingresa tu prompt de imagen aquí...")
|
362 |
+
image_type = gr.Dropdown(["diffusers", "stable-diffusion", "img2img"], label="Tipo de Modelo",
|
363 |
+
value="stable-diffusion")
|
364 |
+
model_name_image = gr.Textbox(label="Nombre del Modelo",
|
365 |
+
value="CompVis/stable-diffusion-v1-4")
|
366 |
+
image_button = gr.Button("Generar Imagen", variant="primary")
|
367 |
+
with gr.Column():
|
368 |
+
image_output = gr.Image(label="Imagen Generada")
|
369 |
+
image_button.click(generate_image_from_prompt, inputs=[prompt_image, image_type, model_name_image],
|
370 |
+
outputs=image_output)
|
371 |
+
|
372 |
+
with gr.Tab("Video"):
|
373 |
+
with gr.Row():
|
374 |
+
with gr.Column():
|
375 |
+
prompt_video = gr.Textbox(label="Prompt de Video", placeholder="Ingresa tu prompt de video aquí...")
|
376 |
+
video_button = gr.Button("Generar Video", variant="primary")
|
377 |
+
with gr.Column():
|
378 |
+
video_output = gr.Video(label="Video Generado")
|
379 |
+
video_button.click(generate_video_from_redis, inputs=prompt_video, outputs=video_output)
|
380 |
+
|
381 |
+
with gr.Tab("Audio"):
|
382 |
+
with gr.Row():
|
383 |
+
with gr.Column():
|
384 |
+
model_name_audio = gr.Textbox(label="Nombre del Modelo", value="facebook/musicgen-small")
|
385 |
+
text_prompts_audio = gr.Textbox(label="Prompts de Audio",
|
386 |
+
placeholder="Ingresa tus prompts de audio aquí...")
|
387 |
+
audio_button = gr.Button("Generar Audio", variant="primary")
|
388 |
+
with gr.Column():
|
389 |
+
audio_output = gr.Audio(label="Audio Generado")
|
390 |
+
audio_button.click(generate_musicgen_audio_from_redis, inputs=[model_name_audio, text_prompts_audio],
|
391 |
+
outputs=audio_output)
|
392 |
+
|
393 |
+
with gr.Tab("Transcripción"):
|
394 |
+
with gr.Row():
|
395 |
+
with gr.Column():
|
396 |
+
audio_file = gr.Audio(type="filepath", label="Archivo de Audio")
|
397 |
+
audio_button = gr.Button("Transcribir Audio", variant="primary")
|
398 |
+
with gr.Column():
|
399 |
+
transcription_output = gr.Textbox(label="Transcripción")
|
400 |
+
audio_button.click(transcribe_audio_from_redis, inputs=audio_file, outputs=transcription_output)
|
401 |
+
|
402 |
+
with gr.Tab("Traducción"):
|
403 |
+
with gr.Row():
|
404 |
+
with gr.Column():
|
405 |
+
model_name_translate = gr.Textbox(label="Nombre del Modelo", value="Helsinki-NLP/opus-mt-en-es")
|
406 |
+
text_input = gr.Textbox(label="Texto a Traducir", placeholder="Ingresa el texto a traducir...")
|
407 |
+
src_lang_input = gr.Textbox(label="Idioma de Origen", value="en")
|
408 |
+
tgt_lang_input = gr.Textbox(label="Idioma de Destino", value="es")
|
409 |
+
translate_button = gr.Button("Traducir Texto", variant="primary")
|
410 |
+
with gr.Column():
|
411 |
+
translation_output = gr.Textbox(label="Traducción")
|
412 |
+
translate_button.click(translate_text_from_redis,
|
413 |
+
inputs=[model_name_translate, text_input, src_lang_input, tgt_lang_input],
|
414 |
+
outputs=translation_output)
|
415 |
+
|
416 |
+
with gr.Tab("Resumen"):
|
417 |
+
with gr.Row():
|
418 |
+
with gr.Column():
|
419 |
+
model_name_summarize = gr.Textbox(label="Nombre del Modelo", value="facebook/bart-large-cnn")
|
420 |
+
text_to_summarize = gr.Textbox(label="Texto para Resumir",
|
421 |
+
placeholder="Ingresa el texto a resumir...")
|
422 |
+
summarize_button = gr.Button("Generar Resumen", variant="primary")
|
423 |
+
with gr.Column():
|
424 |
+
summary_output = gr.Textbox(label="Resumen")
|
425 |
+
summarize_button.click(summarize_text_from_redis, inputs=[model_name_summarize, text_to_summarize],
|
426 |
+
outputs=summary_output)
|
427 |
|
428 |
app.launch()
|
429 |
|
430 |
+
|
431 |
if __name__ == "__main__":
|
432 |
gradio_app()
|