Spaces:
Runtime error
Runtime error
luoxiang
commited on
Commit
•
f73c2e2
1
Parent(s):
6ddafe2
Add application file
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .DS_Store +0 -0
- CodeFormer/.DS_Store +0 -0
- CodeFormer/.gitignore +129 -0
- CodeFormer/README.md +123 -0
- CodeFormer/assets/CodeFormer_logo.png +0 -0
- CodeFormer/assets/color_enhancement_result1.png +0 -0
- CodeFormer/assets/color_enhancement_result2.png +0 -0
- CodeFormer/assets/inpainting_result1.png +0 -0
- CodeFormer/assets/inpainting_result2.png +0 -0
- CodeFormer/assets/network.jpg +0 -0
- CodeFormer/assets/restoration_result1.png +0 -0
- CodeFormer/assets/restoration_result2.png +0 -0
- CodeFormer/assets/restoration_result3.png +0 -0
- CodeFormer/assets/restoration_result4.png +0 -0
- CodeFormer/basicsr/.DS_Store +0 -0
- CodeFormer/basicsr/VERSION +1 -0
- CodeFormer/basicsr/__init__.py +11 -0
- CodeFormer/basicsr/archs/__init__.py +25 -0
- CodeFormer/basicsr/archs/arcface_arch.py +245 -0
- CodeFormer/basicsr/archs/arch_util.py +318 -0
- CodeFormer/basicsr/archs/codeformer_arch.py +276 -0
- CodeFormer/basicsr/archs/rrdbnet_arch.py +119 -0
- CodeFormer/basicsr/archs/vgg_arch.py +161 -0
- CodeFormer/basicsr/archs/vqgan_arch.py +435 -0
- CodeFormer/basicsr/data/__init__.py +100 -0
- CodeFormer/basicsr/data/data_sampler.py +48 -0
- CodeFormer/basicsr/data/data_util.py +305 -0
- CodeFormer/basicsr/data/prefetch_dataloader.py +125 -0
- CodeFormer/basicsr/data/transforms.py +165 -0
- CodeFormer/basicsr/losses/__init__.py +26 -0
- CodeFormer/basicsr/losses/loss_util.py +95 -0
- CodeFormer/basicsr/losses/losses.py +455 -0
- CodeFormer/basicsr/metrics/__init__.py +19 -0
- CodeFormer/basicsr/metrics/metric_util.py +45 -0
- CodeFormer/basicsr/metrics/psnr_ssim.py +128 -0
- CodeFormer/basicsr/models/__init__.py +30 -0
- CodeFormer/basicsr/ops/.DS_Store +0 -0
- CodeFormer/basicsr/ops/__init__.py +0 -0
- CodeFormer/basicsr/ops/dcn/__init__.py +7 -0
- CodeFormer/basicsr/ops/dcn/deform_conv.py +377 -0
- CodeFormer/basicsr/ops/dcn/src/deform_conv_cuda.cpp +685 -0
- CodeFormer/basicsr/ops/dcn/src/deform_conv_cuda_kernel.cu +867 -0
- CodeFormer/basicsr/ops/dcn/src/deform_conv_ext.cpp +164 -0
- CodeFormer/basicsr/ops/fused_act/__init__.py +3 -0
- CodeFormer/basicsr/ops/fused_act/fused_act.py +89 -0
- CodeFormer/basicsr/ops/fused_act/src/fused_bias_act.cpp +26 -0
- CodeFormer/basicsr/ops/fused_act/src/fused_bias_act_kernel.cu +100 -0
- CodeFormer/basicsr/ops/upfirdn2d/__init__.py +3 -0
- CodeFormer/basicsr/ops/upfirdn2d/src/upfirdn2d.cpp +24 -0
- CodeFormer/basicsr/ops/upfirdn2d/src/upfirdn2d_kernel.cu +370 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
CodeFormer/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
CodeFormer/.gitignore
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.vscode
|
2 |
+
|
3 |
+
# ignored files
|
4 |
+
version.py
|
5 |
+
|
6 |
+
# ignored files with suffix
|
7 |
+
*.html
|
8 |
+
# *.png
|
9 |
+
# *.jpeg
|
10 |
+
# *.jpg
|
11 |
+
*.pt
|
12 |
+
*.gif
|
13 |
+
*.pth
|
14 |
+
*.dat
|
15 |
+
*.zip
|
16 |
+
|
17 |
+
# template
|
18 |
+
|
19 |
+
# Byte-compiled / optimized / DLL files
|
20 |
+
__pycache__/
|
21 |
+
*.py[cod]
|
22 |
+
*$py.class
|
23 |
+
|
24 |
+
# C extensions
|
25 |
+
*.so
|
26 |
+
|
27 |
+
# Distribution / packaging
|
28 |
+
.Python
|
29 |
+
build/
|
30 |
+
develop-eggs/
|
31 |
+
dist/
|
32 |
+
downloads/
|
33 |
+
eggs/
|
34 |
+
.eggs/
|
35 |
+
lib/
|
36 |
+
lib64/
|
37 |
+
parts/
|
38 |
+
sdist/
|
39 |
+
var/
|
40 |
+
wheels/
|
41 |
+
*.egg-info/
|
42 |
+
.installed.cfg
|
43 |
+
*.egg
|
44 |
+
MANIFEST
|
45 |
+
|
46 |
+
# PyInstaller
|
47 |
+
# Usually these files are written by a python script from a template
|
48 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
49 |
+
*.manifest
|
50 |
+
*.spec
|
51 |
+
|
52 |
+
# Installer logs
|
53 |
+
pip-log.txt
|
54 |
+
pip-delete-this-directory.txt
|
55 |
+
|
56 |
+
# Unit test / coverage reports
|
57 |
+
htmlcov/
|
58 |
+
.tox/
|
59 |
+
.coverage
|
60 |
+
.coverage.*
|
61 |
+
.cache
|
62 |
+
nosetests.xml
|
63 |
+
coverage.xml
|
64 |
+
*.cover
|
65 |
+
.hypothesis/
|
66 |
+
.pytest_cache/
|
67 |
+
|
68 |
+
# Translations
|
69 |
+
*.mo
|
70 |
+
*.pot
|
71 |
+
|
72 |
+
# Django stuff:
|
73 |
+
*.log
|
74 |
+
local_settings.py
|
75 |
+
db.sqlite3
|
76 |
+
|
77 |
+
# Flask stuff:
|
78 |
+
instance/
|
79 |
+
.webassets-cache
|
80 |
+
|
81 |
+
# Scrapy stuff:
|
82 |
+
.scrapy
|
83 |
+
|
84 |
+
# Sphinx documentation
|
85 |
+
docs/_build/
|
86 |
+
|
87 |
+
# PyBuilder
|
88 |
+
target/
|
89 |
+
|
90 |
+
# Jupyter Notebook
|
91 |
+
.ipynb_checkpoints
|
92 |
+
|
93 |
+
# pyenv
|
94 |
+
.python-version
|
95 |
+
|
96 |
+
# celery beat schedule file
|
97 |
+
celerybeat-schedule
|
98 |
+
|
99 |
+
# SageMath parsed files
|
100 |
+
*.sage.py
|
101 |
+
|
102 |
+
# Environments
|
103 |
+
.env
|
104 |
+
.venv
|
105 |
+
env/
|
106 |
+
venv/
|
107 |
+
ENV/
|
108 |
+
env.bak/
|
109 |
+
venv.bak/
|
110 |
+
|
111 |
+
# Spyder project settings
|
112 |
+
.spyderproject
|
113 |
+
.spyproject
|
114 |
+
|
115 |
+
# Rope project settings
|
116 |
+
.ropeproject
|
117 |
+
|
118 |
+
# mkdocs documentation
|
119 |
+
/site
|
120 |
+
|
121 |
+
# mypy
|
122 |
+
.mypy_cache/
|
123 |
+
|
124 |
+
# project
|
125 |
+
results/
|
126 |
+
dlib/
|
127 |
+
*.pth
|
128 |
+
*_old*
|
129 |
+
|
CodeFormer/README.md
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<p align="center">
|
2 |
+
<img src="assets/CodeFormer_logo.png" height=110>
|
3 |
+
</p>
|
4 |
+
|
5 |
+
## Towards Robust Blind Face Restoration with Codebook Lookup Transformer
|
6 |
+
|
7 |
+
[Paper](https://arxiv.org/abs/2206.11253) | [Project Page](https://shangchenzhou.com/projects/CodeFormer/) | [Video](https://youtu.be/d3VDpkXlueI)
|
8 |
+
|
9 |
+
|
10 |
+
<a href="https://colab.research.google.com/drive/1m52PNveE4PBhYrecj34cnpEeiHcC5LTb?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="google colab logo"></a> [![Replicate](https://img.shields.io/badge/Demo-%F0%9F%9A%80%20Replicate-blue)](https://replicate.com/sczhou/codeformer) ![visitors](https://visitor-badge.glitch.me/badge?page_id=sczhou/CodeFormer)
|
11 |
+
|
12 |
+
[Shangchen Zhou](https://shangchenzhou.com/), [Kelvin C.K. Chan](https://ckkelvinchan.github.io/), [Chongyi Li](https://li-chongyi.github.io/), [Chen Change Loy](https://www.mmlab-ntu.com/person/ccloy/)
|
13 |
+
|
14 |
+
S-Lab, Nanyang Technological University
|
15 |
+
|
16 |
+
<img src="assets/network.jpg" width="800px"/>
|
17 |
+
|
18 |
+
|
19 |
+
:star: If CodeFormer is helpful to your images or projects, please help star this repo. Thanks! :hugs:
|
20 |
+
|
21 |
+
### Update
|
22 |
+
|
23 |
+
- **2022.09.09**: Integrated to :rocket: [Replicate](https://replicate.com/). Try out online demo! [![Replicate](https://img.shields.io/badge/Demo-%F0%9F%9A%80%20Replicate-blue)](https://replicate.com/sczhou/codeformer)
|
24 |
+
- **2022.09.04**: Add face upsampling `--face_upsample` for high-resolution AI-created face enhancement.
|
25 |
+
- **2022.08.23**: Some modifications on face detection and fusion for better AI-created face enhancement.
|
26 |
+
- **2022.08.07**: Integrate [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) to support background image enhancement.
|
27 |
+
- **2022.07.29**: Integrate new face detectors of `['RetinaFace'(default), 'YOLOv5']`.
|
28 |
+
- **2022.07.17**: Add Colab demo of CodeFormer. <a href="https://colab.research.google.com/drive/1m52PNveE4PBhYrecj34cnpEeiHcC5LTb?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="google colab logo"></a>
|
29 |
+
- **2022.07.16**: Release inference code for face restoration. :blush:
|
30 |
+
- **2022.06.21**: This repo is created.
|
31 |
+
|
32 |
+
### TODO
|
33 |
+
- [ ] Add checkpoint for face inpainting
|
34 |
+
- [ ] Add training code and config files
|
35 |
+
- [x] ~~Add background image enhancement~~
|
36 |
+
|
37 |
+
#### Face Restoration
|
38 |
+
|
39 |
+
<img src="assets/restoration_result1.png" width="400px"/> <img src="assets/restoration_result2.png" width="400px"/>
|
40 |
+
<img src="assets/restoration_result3.png" width="400px"/> <img src="assets/restoration_result4.png" width="400px"/>
|
41 |
+
|
42 |
+
#### Face Color Enhancement and Restoration
|
43 |
+
|
44 |
+
<img src="assets/color_enhancement_result1.png" width="400px"/> <img src="assets/color_enhancement_result2.png" width="400px"/>
|
45 |
+
|
46 |
+
#### Face Inpainting
|
47 |
+
|
48 |
+
<img src="assets/inpainting_result1.png" width="400px"/> <img src="assets/inpainting_result2.png" width="400px"/>
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
### Dependencies and Installation
|
53 |
+
|
54 |
+
- Pytorch >= 1.7.1
|
55 |
+
- CUDA >= 10.1
|
56 |
+
- Other required packages in `requirements.txt`
|
57 |
+
```
|
58 |
+
# git clone this repository
|
59 |
+
git clone https://github.com/sczhou/CodeFormer
|
60 |
+
cd CodeFormer
|
61 |
+
|
62 |
+
# create new anaconda env
|
63 |
+
conda create -n codeformer python=3.8 -y
|
64 |
+
conda activate codeformer
|
65 |
+
|
66 |
+
# install python dependencies
|
67 |
+
pip3 install -r requirements.txt
|
68 |
+
python basicsr/setup.py develop
|
69 |
+
```
|
70 |
+
<!-- conda install -c conda-forge dlib -->
|
71 |
+
|
72 |
+
### Quick Inference
|
73 |
+
|
74 |
+
##### Download Pre-trained Models:
|
75 |
+
Download the facelib pretrained models from [[Google Drive](https://drive.google.com/drive/folders/1b_3qwrzY_kTQh0-SnBoGBgOrJ_PLZSKm?usp=sharing) | [OneDrive](https://entuedu-my.sharepoint.com/:f:/g/personal/s200094_e_ntu_edu_sg/EvDxR7FcAbZMp_MA9ouq7aQB8XTppMb3-T0uGZ_2anI2mg?e=DXsJFo)] to the `weights/facelib` folder. You can manually download the pretrained models OR download by runing the following command.
|
76 |
+
```
|
77 |
+
python scripts/download_pretrained_models.py facelib
|
78 |
+
```
|
79 |
+
|
80 |
+
Download the CodeFormer pretrained models from [[Google Drive](https://drive.google.com/drive/folders/1CNNByjHDFt0b95q54yMVp6Ifo5iuU6QS?usp=sharing) | [OneDrive](https://entuedu-my.sharepoint.com/:f:/g/personal/s200094_e_ntu_edu_sg/EoKFj4wo8cdIn2-TY2IV6CYBhZ0pIG4kUOeHdPR_A5nlbg?e=AO8UN9)] to the `weights/CodeFormer` folder. You can manually download the pretrained models OR download by runing the following command.
|
81 |
+
```
|
82 |
+
python scripts/download_pretrained_models.py CodeFormer
|
83 |
+
```
|
84 |
+
|
85 |
+
##### Prepare Testing Data:
|
86 |
+
You can put the testing images in the `inputs/TestWhole` folder. If you would like to test on cropped and aligned faces, you can put them in the `inputs/cropped_faces` folder.
|
87 |
+
|
88 |
+
|
89 |
+
##### Testing on Face Restoration:
|
90 |
+
```
|
91 |
+
# For cropped and aligned faces
|
92 |
+
python inference_codeformer.py --w 0.5 --has_aligned --test_path [input folder]
|
93 |
+
|
94 |
+
# For the whole images
|
95 |
+
# Add '--bg_upsampler realesrgan' to enhance the background regions with Real-ESRGAN
|
96 |
+
# Add '--face_upsample' to further upsample restorated face with Real-ESRGAN
|
97 |
+
python inference_codeformer.py --w 0.7 --test_path [input folder]
|
98 |
+
```
|
99 |
+
|
100 |
+
NOTE that *w* is in [0, 1]. Generally, smaller *w* tends to produce a higher-quality result, while larger *w* yields a higher-fidelity result.
|
101 |
+
|
102 |
+
The results will be saved in the `results` folder.
|
103 |
+
|
104 |
+
### Citation
|
105 |
+
If our work is useful for your research, please consider citing:
|
106 |
+
|
107 |
+
@article{zhou2022codeformer,
|
108 |
+
author = {Zhou, Shangchen and Chan, Kelvin C.K. and Li, Chongyi and Loy, Chen Change},
|
109 |
+
title = {Towards Robust Blind Face Restoration with Codebook Lookup TransFormer},
|
110 |
+
journal = {arXiv preprint arXiv:2206.11253},
|
111 |
+
year = {2022}
|
112 |
+
}
|
113 |
+
|
114 |
+
### License
|
115 |
+
|
116 |
+
<a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.
|
117 |
+
|
118 |
+
### Acknowledgement
|
119 |
+
|
120 |
+
This project is based on [BasicSR](https://github.com/XPixelGroup/BasicSR). We also borrow some codes from [Unleashing Transformers](https://github.com/samb-t/unleashing-transformers), [YOLOv5-face](https://github.com/deepcam-cn/yolov5-face), and [FaceXLib](https://github.com/xinntao/facexlib). Thanks for their awesome works.
|
121 |
+
|
122 |
+
### Contact
|
123 |
+
If you have any question, please feel free to reach me out at `[email protected]`.
|
CodeFormer/assets/CodeFormer_logo.png
ADDED
CodeFormer/assets/color_enhancement_result1.png
ADDED
CodeFormer/assets/color_enhancement_result2.png
ADDED
CodeFormer/assets/inpainting_result1.png
ADDED
CodeFormer/assets/inpainting_result2.png
ADDED
CodeFormer/assets/network.jpg
ADDED
CodeFormer/assets/restoration_result1.png
ADDED
CodeFormer/assets/restoration_result2.png
ADDED
CodeFormer/assets/restoration_result3.png
ADDED
CodeFormer/assets/restoration_result4.png
ADDED
CodeFormer/basicsr/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
CodeFormer/basicsr/VERSION
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.3.2
|
CodeFormer/basicsr/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/xinntao/BasicSR
|
2 |
+
# flake8: noqa
|
3 |
+
from .archs import *
|
4 |
+
from .data import *
|
5 |
+
from .losses import *
|
6 |
+
from .metrics import *
|
7 |
+
from .models import *
|
8 |
+
from .ops import *
|
9 |
+
from .train import *
|
10 |
+
from .utils import *
|
11 |
+
from .version import __gitsha__, __version__
|
CodeFormer/basicsr/archs/__init__.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
from copy import deepcopy
|
3 |
+
from os import path as osp
|
4 |
+
|
5 |
+
from basicsr.utils import get_root_logger, scandir
|
6 |
+
from basicsr.utils.registry import ARCH_REGISTRY
|
7 |
+
|
8 |
+
__all__ = ['build_network']
|
9 |
+
|
10 |
+
# automatically scan and import arch modules for registry
|
11 |
+
# scan all the files under the 'archs' folder and collect files ending with
|
12 |
+
# '_arch.py'
|
13 |
+
arch_folder = osp.dirname(osp.abspath(__file__))
|
14 |
+
arch_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(arch_folder) if v.endswith('_arch.py')]
|
15 |
+
# import all the arch modules
|
16 |
+
_arch_modules = [importlib.import_module(f'basicsr.archs.{file_name}') for file_name in arch_filenames]
|
17 |
+
|
18 |
+
|
19 |
+
def build_network(opt):
|
20 |
+
opt = deepcopy(opt)
|
21 |
+
network_type = opt.pop('type')
|
22 |
+
net = ARCH_REGISTRY.get(network_type)(**opt)
|
23 |
+
logger = get_root_logger()
|
24 |
+
logger.info(f'Network [{net.__class__.__name__}] is created.')
|
25 |
+
return net
|
CodeFormer/basicsr/archs/arcface_arch.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
from basicsr.utils.registry import ARCH_REGISTRY
|
3 |
+
|
4 |
+
|
5 |
+
def conv3x3(inplanes, outplanes, stride=1):
|
6 |
+
"""A simple wrapper for 3x3 convolution with padding.
|
7 |
+
|
8 |
+
Args:
|
9 |
+
inplanes (int): Channel number of inputs.
|
10 |
+
outplanes (int): Channel number of outputs.
|
11 |
+
stride (int): Stride in convolution. Default: 1.
|
12 |
+
"""
|
13 |
+
return nn.Conv2d(inplanes, outplanes, kernel_size=3, stride=stride, padding=1, bias=False)
|
14 |
+
|
15 |
+
|
16 |
+
class BasicBlock(nn.Module):
|
17 |
+
"""Basic residual block used in the ResNetArcFace architecture.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
inplanes (int): Channel number of inputs.
|
21 |
+
planes (int): Channel number of outputs.
|
22 |
+
stride (int): Stride in convolution. Default: 1.
|
23 |
+
downsample (nn.Module): The downsample module. Default: None.
|
24 |
+
"""
|
25 |
+
expansion = 1 # output channel expansion ratio
|
26 |
+
|
27 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
28 |
+
super(BasicBlock, self).__init__()
|
29 |
+
self.conv1 = conv3x3(inplanes, planes, stride)
|
30 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
31 |
+
self.relu = nn.ReLU(inplace=True)
|
32 |
+
self.conv2 = conv3x3(planes, planes)
|
33 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
34 |
+
self.downsample = downsample
|
35 |
+
self.stride = stride
|
36 |
+
|
37 |
+
def forward(self, x):
|
38 |
+
residual = x
|
39 |
+
|
40 |
+
out = self.conv1(x)
|
41 |
+
out = self.bn1(out)
|
42 |
+
out = self.relu(out)
|
43 |
+
|
44 |
+
out = self.conv2(out)
|
45 |
+
out = self.bn2(out)
|
46 |
+
|
47 |
+
if self.downsample is not None:
|
48 |
+
residual = self.downsample(x)
|
49 |
+
|
50 |
+
out += residual
|
51 |
+
out = self.relu(out)
|
52 |
+
|
53 |
+
return out
|
54 |
+
|
55 |
+
|
56 |
+
class IRBlock(nn.Module):
|
57 |
+
"""Improved residual block (IR Block) used in the ResNetArcFace architecture.
|
58 |
+
|
59 |
+
Args:
|
60 |
+
inplanes (int): Channel number of inputs.
|
61 |
+
planes (int): Channel number of outputs.
|
62 |
+
stride (int): Stride in convolution. Default: 1.
|
63 |
+
downsample (nn.Module): The downsample module. Default: None.
|
64 |
+
use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True.
|
65 |
+
"""
|
66 |
+
expansion = 1 # output channel expansion ratio
|
67 |
+
|
68 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True):
|
69 |
+
super(IRBlock, self).__init__()
|
70 |
+
self.bn0 = nn.BatchNorm2d(inplanes)
|
71 |
+
self.conv1 = conv3x3(inplanes, inplanes)
|
72 |
+
self.bn1 = nn.BatchNorm2d(inplanes)
|
73 |
+
self.prelu = nn.PReLU()
|
74 |
+
self.conv2 = conv3x3(inplanes, planes, stride)
|
75 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
76 |
+
self.downsample = downsample
|
77 |
+
self.stride = stride
|
78 |
+
self.use_se = use_se
|
79 |
+
if self.use_se:
|
80 |
+
self.se = SEBlock(planes)
|
81 |
+
|
82 |
+
def forward(self, x):
|
83 |
+
residual = x
|
84 |
+
out = self.bn0(x)
|
85 |
+
out = self.conv1(out)
|
86 |
+
out = self.bn1(out)
|
87 |
+
out = self.prelu(out)
|
88 |
+
|
89 |
+
out = self.conv2(out)
|
90 |
+
out = self.bn2(out)
|
91 |
+
if self.use_se:
|
92 |
+
out = self.se(out)
|
93 |
+
|
94 |
+
if self.downsample is not None:
|
95 |
+
residual = self.downsample(x)
|
96 |
+
|
97 |
+
out += residual
|
98 |
+
out = self.prelu(out)
|
99 |
+
|
100 |
+
return out
|
101 |
+
|
102 |
+
|
103 |
+
class Bottleneck(nn.Module):
|
104 |
+
"""Bottleneck block used in the ResNetArcFace architecture.
|
105 |
+
|
106 |
+
Args:
|
107 |
+
inplanes (int): Channel number of inputs.
|
108 |
+
planes (int): Channel number of outputs.
|
109 |
+
stride (int): Stride in convolution. Default: 1.
|
110 |
+
downsample (nn.Module): The downsample module. Default: None.
|
111 |
+
"""
|
112 |
+
expansion = 4 # output channel expansion ratio
|
113 |
+
|
114 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
115 |
+
super(Bottleneck, self).__init__()
|
116 |
+
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
|
117 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
118 |
+
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
|
119 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
120 |
+
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
|
121 |
+
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
122 |
+
self.relu = nn.ReLU(inplace=True)
|
123 |
+
self.downsample = downsample
|
124 |
+
self.stride = stride
|
125 |
+
|
126 |
+
def forward(self, x):
|
127 |
+
residual = x
|
128 |
+
|
129 |
+
out = self.conv1(x)
|
130 |
+
out = self.bn1(out)
|
131 |
+
out = self.relu(out)
|
132 |
+
|
133 |
+
out = self.conv2(out)
|
134 |
+
out = self.bn2(out)
|
135 |
+
out = self.relu(out)
|
136 |
+
|
137 |
+
out = self.conv3(out)
|
138 |
+
out = self.bn3(out)
|
139 |
+
|
140 |
+
if self.downsample is not None:
|
141 |
+
residual = self.downsample(x)
|
142 |
+
|
143 |
+
out += residual
|
144 |
+
out = self.relu(out)
|
145 |
+
|
146 |
+
return out
|
147 |
+
|
148 |
+
|
149 |
+
class SEBlock(nn.Module):
|
150 |
+
"""The squeeze-and-excitation block (SEBlock) used in the IRBlock.
|
151 |
+
|
152 |
+
Args:
|
153 |
+
channel (int): Channel number of inputs.
|
154 |
+
reduction (int): Channel reduction ration. Default: 16.
|
155 |
+
"""
|
156 |
+
|
157 |
+
def __init__(self, channel, reduction=16):
|
158 |
+
super(SEBlock, self).__init__()
|
159 |
+
self.avg_pool = nn.AdaptiveAvgPool2d(1) # pool to 1x1 without spatial information
|
160 |
+
self.fc = nn.Sequential(
|
161 |
+
nn.Linear(channel, channel // reduction), nn.PReLU(), nn.Linear(channel // reduction, channel),
|
162 |
+
nn.Sigmoid())
|
163 |
+
|
164 |
+
def forward(self, x):
|
165 |
+
b, c, _, _ = x.size()
|
166 |
+
y = self.avg_pool(x).view(b, c)
|
167 |
+
y = self.fc(y).view(b, c, 1, 1)
|
168 |
+
return x * y
|
169 |
+
|
170 |
+
|
171 |
+
@ARCH_REGISTRY.register()
|
172 |
+
class ResNetArcFace(nn.Module):
|
173 |
+
"""ArcFace with ResNet architectures.
|
174 |
+
|
175 |
+
Ref: ArcFace: Additive Angular Margin Loss for Deep Face Recognition.
|
176 |
+
|
177 |
+
Args:
|
178 |
+
block (str): Block used in the ArcFace architecture.
|
179 |
+
layers (tuple(int)): Block numbers in each layer.
|
180 |
+
use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True.
|
181 |
+
"""
|
182 |
+
|
183 |
+
def __init__(self, block, layers, use_se=True):
|
184 |
+
if block == 'IRBlock':
|
185 |
+
block = IRBlock
|
186 |
+
self.inplanes = 64
|
187 |
+
self.use_se = use_se
|
188 |
+
super(ResNetArcFace, self).__init__()
|
189 |
+
|
190 |
+
self.conv1 = nn.Conv2d(1, 64, kernel_size=3, padding=1, bias=False)
|
191 |
+
self.bn1 = nn.BatchNorm2d(64)
|
192 |
+
self.prelu = nn.PReLU()
|
193 |
+
self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
|
194 |
+
self.layer1 = self._make_layer(block, 64, layers[0])
|
195 |
+
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
|
196 |
+
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
|
197 |
+
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
|
198 |
+
self.bn4 = nn.BatchNorm2d(512)
|
199 |
+
self.dropout = nn.Dropout()
|
200 |
+
self.fc5 = nn.Linear(512 * 8 * 8, 512)
|
201 |
+
self.bn5 = nn.BatchNorm1d(512)
|
202 |
+
|
203 |
+
# initialization
|
204 |
+
for m in self.modules():
|
205 |
+
if isinstance(m, nn.Conv2d):
|
206 |
+
nn.init.xavier_normal_(m.weight)
|
207 |
+
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
|
208 |
+
nn.init.constant_(m.weight, 1)
|
209 |
+
nn.init.constant_(m.bias, 0)
|
210 |
+
elif isinstance(m, nn.Linear):
|
211 |
+
nn.init.xavier_normal_(m.weight)
|
212 |
+
nn.init.constant_(m.bias, 0)
|
213 |
+
|
214 |
+
def _make_layer(self, block, planes, num_blocks, stride=1):
|
215 |
+
downsample = None
|
216 |
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
217 |
+
downsample = nn.Sequential(
|
218 |
+
nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
|
219 |
+
nn.BatchNorm2d(planes * block.expansion),
|
220 |
+
)
|
221 |
+
layers = []
|
222 |
+
layers.append(block(self.inplanes, planes, stride, downsample, use_se=self.use_se))
|
223 |
+
self.inplanes = planes
|
224 |
+
for _ in range(1, num_blocks):
|
225 |
+
layers.append(block(self.inplanes, planes, use_se=self.use_se))
|
226 |
+
|
227 |
+
return nn.Sequential(*layers)
|
228 |
+
|
229 |
+
def forward(self, x):
|
230 |
+
x = self.conv1(x)
|
231 |
+
x = self.bn1(x)
|
232 |
+
x = self.prelu(x)
|
233 |
+
x = self.maxpool(x)
|
234 |
+
|
235 |
+
x = self.layer1(x)
|
236 |
+
x = self.layer2(x)
|
237 |
+
x = self.layer3(x)
|
238 |
+
x = self.layer4(x)
|
239 |
+
x = self.bn4(x)
|
240 |
+
x = self.dropout(x)
|
241 |
+
x = x.view(x.size(0), -1)
|
242 |
+
x = self.fc5(x)
|
243 |
+
x = self.bn5(x)
|
244 |
+
|
245 |
+
return x
|
CodeFormer/basicsr/archs/arch_util.py
ADDED
@@ -0,0 +1,318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections.abc
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torchvision
|
5 |
+
import warnings
|
6 |
+
from distutils.version import LooseVersion
|
7 |
+
from itertools import repeat
|
8 |
+
from torch import nn as nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
from torch.nn import init as init
|
11 |
+
from torch.nn.modules.batchnorm import _BatchNorm
|
12 |
+
|
13 |
+
from basicsr.ops.dcn import ModulatedDeformConvPack, modulated_deform_conv
|
14 |
+
from basicsr.utils import get_root_logger
|
15 |
+
|
16 |
+
|
17 |
+
@torch.no_grad()
|
18 |
+
def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs):
|
19 |
+
"""Initialize network weights.
|
20 |
+
|
21 |
+
Args:
|
22 |
+
module_list (list[nn.Module] | nn.Module): Modules to be initialized.
|
23 |
+
scale (float): Scale initialized weights, especially for residual
|
24 |
+
blocks. Default: 1.
|
25 |
+
bias_fill (float): The value to fill bias. Default: 0
|
26 |
+
kwargs (dict): Other arguments for initialization function.
|
27 |
+
"""
|
28 |
+
if not isinstance(module_list, list):
|
29 |
+
module_list = [module_list]
|
30 |
+
for module in module_list:
|
31 |
+
for m in module.modules():
|
32 |
+
if isinstance(m, nn.Conv2d):
|
33 |
+
init.kaiming_normal_(m.weight, **kwargs)
|
34 |
+
m.weight.data *= scale
|
35 |
+
if m.bias is not None:
|
36 |
+
m.bias.data.fill_(bias_fill)
|
37 |
+
elif isinstance(m, nn.Linear):
|
38 |
+
init.kaiming_normal_(m.weight, **kwargs)
|
39 |
+
m.weight.data *= scale
|
40 |
+
if m.bias is not None:
|
41 |
+
m.bias.data.fill_(bias_fill)
|
42 |
+
elif isinstance(m, _BatchNorm):
|
43 |
+
init.constant_(m.weight, 1)
|
44 |
+
if m.bias is not None:
|
45 |
+
m.bias.data.fill_(bias_fill)
|
46 |
+
|
47 |
+
|
48 |
+
def make_layer(basic_block, num_basic_block, **kwarg):
|
49 |
+
"""Make layers by stacking the same blocks.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
basic_block (nn.module): nn.module class for basic block.
|
53 |
+
num_basic_block (int): number of blocks.
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
nn.Sequential: Stacked blocks in nn.Sequential.
|
57 |
+
"""
|
58 |
+
layers = []
|
59 |
+
for _ in range(num_basic_block):
|
60 |
+
layers.append(basic_block(**kwarg))
|
61 |
+
return nn.Sequential(*layers)
|
62 |
+
|
63 |
+
|
64 |
+
class ResidualBlockNoBN(nn.Module):
|
65 |
+
"""Residual block without BN.
|
66 |
+
|
67 |
+
It has a style of:
|
68 |
+
---Conv-ReLU-Conv-+-
|
69 |
+
|________________|
|
70 |
+
|
71 |
+
Args:
|
72 |
+
num_feat (int): Channel number of intermediate features.
|
73 |
+
Default: 64.
|
74 |
+
res_scale (float): Residual scale. Default: 1.
|
75 |
+
pytorch_init (bool): If set to True, use pytorch default init,
|
76 |
+
otherwise, use default_init_weights. Default: False.
|
77 |
+
"""
|
78 |
+
|
79 |
+
def __init__(self, num_feat=64, res_scale=1, pytorch_init=False):
|
80 |
+
super(ResidualBlockNoBN, self).__init__()
|
81 |
+
self.res_scale = res_scale
|
82 |
+
self.conv1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
|
83 |
+
self.conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
|
84 |
+
self.relu = nn.ReLU(inplace=True)
|
85 |
+
|
86 |
+
if not pytorch_init:
|
87 |
+
default_init_weights([self.conv1, self.conv2], 0.1)
|
88 |
+
|
89 |
+
def forward(self, x):
|
90 |
+
identity = x
|
91 |
+
out = self.conv2(self.relu(self.conv1(x)))
|
92 |
+
return identity + out * self.res_scale
|
93 |
+
|
94 |
+
|
95 |
+
class Upsample(nn.Sequential):
|
96 |
+
"""Upsample module.
|
97 |
+
|
98 |
+
Args:
|
99 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
100 |
+
num_feat (int): Channel number of intermediate features.
|
101 |
+
"""
|
102 |
+
|
103 |
+
def __init__(self, scale, num_feat):
|
104 |
+
m = []
|
105 |
+
if (scale & (scale - 1)) == 0: # scale = 2^n
|
106 |
+
for _ in range(int(math.log(scale, 2))):
|
107 |
+
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
108 |
+
m.append(nn.PixelShuffle(2))
|
109 |
+
elif scale == 3:
|
110 |
+
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
111 |
+
m.append(nn.PixelShuffle(3))
|
112 |
+
else:
|
113 |
+
raise ValueError(f'scale {scale} is not supported. Supported scales: 2^n and 3.')
|
114 |
+
super(Upsample, self).__init__(*m)
|
115 |
+
|
116 |
+
|
117 |
+
def flow_warp(x, flow, interp_mode='bilinear', padding_mode='zeros', align_corners=True):
|
118 |
+
"""Warp an image or feature map with optical flow.
|
119 |
+
|
120 |
+
Args:
|
121 |
+
x (Tensor): Tensor with size (n, c, h, w).
|
122 |
+
flow (Tensor): Tensor with size (n, h, w, 2), normal value.
|
123 |
+
interp_mode (str): 'nearest' or 'bilinear'. Default: 'bilinear'.
|
124 |
+
padding_mode (str): 'zeros' or 'border' or 'reflection'.
|
125 |
+
Default: 'zeros'.
|
126 |
+
align_corners (bool): Before pytorch 1.3, the default value is
|
127 |
+
align_corners=True. After pytorch 1.3, the default value is
|
128 |
+
align_corners=False. Here, we use the True as default.
|
129 |
+
|
130 |
+
Returns:
|
131 |
+
Tensor: Warped image or feature map.
|
132 |
+
"""
|
133 |
+
assert x.size()[-2:] == flow.size()[1:3]
|
134 |
+
_, _, h, w = x.size()
|
135 |
+
# create mesh grid
|
136 |
+
grid_y, grid_x = torch.meshgrid(torch.arange(0, h).type_as(x), torch.arange(0, w).type_as(x))
|
137 |
+
grid = torch.stack((grid_x, grid_y), 2).float() # W(x), H(y), 2
|
138 |
+
grid.requires_grad = False
|
139 |
+
|
140 |
+
vgrid = grid + flow
|
141 |
+
# scale grid to [-1,1]
|
142 |
+
vgrid_x = 2.0 * vgrid[:, :, :, 0] / max(w - 1, 1) - 1.0
|
143 |
+
vgrid_y = 2.0 * vgrid[:, :, :, 1] / max(h - 1, 1) - 1.0
|
144 |
+
vgrid_scaled = torch.stack((vgrid_x, vgrid_y), dim=3)
|
145 |
+
output = F.grid_sample(x, vgrid_scaled, mode=interp_mode, padding_mode=padding_mode, align_corners=align_corners)
|
146 |
+
|
147 |
+
# TODO, what if align_corners=False
|
148 |
+
return output
|
149 |
+
|
150 |
+
|
151 |
+
def resize_flow(flow, size_type, sizes, interp_mode='bilinear', align_corners=False):
|
152 |
+
"""Resize a flow according to ratio or shape.
|
153 |
+
|
154 |
+
Args:
|
155 |
+
flow (Tensor): Precomputed flow. shape [N, 2, H, W].
|
156 |
+
size_type (str): 'ratio' or 'shape'.
|
157 |
+
sizes (list[int | float]): the ratio for resizing or the final output
|
158 |
+
shape.
|
159 |
+
1) The order of ratio should be [ratio_h, ratio_w]. For
|
160 |
+
downsampling, the ratio should be smaller than 1.0 (i.e., ratio
|
161 |
+
< 1.0). For upsampling, the ratio should be larger than 1.0 (i.e.,
|
162 |
+
ratio > 1.0).
|
163 |
+
2) The order of output_size should be [out_h, out_w].
|
164 |
+
interp_mode (str): The mode of interpolation for resizing.
|
165 |
+
Default: 'bilinear'.
|
166 |
+
align_corners (bool): Whether align corners. Default: False.
|
167 |
+
|
168 |
+
Returns:
|
169 |
+
Tensor: Resized flow.
|
170 |
+
"""
|
171 |
+
_, _, flow_h, flow_w = flow.size()
|
172 |
+
if size_type == 'ratio':
|
173 |
+
output_h, output_w = int(flow_h * sizes[0]), int(flow_w * sizes[1])
|
174 |
+
elif size_type == 'shape':
|
175 |
+
output_h, output_w = sizes[0], sizes[1]
|
176 |
+
else:
|
177 |
+
raise ValueError(f'Size type should be ratio or shape, but got type {size_type}.')
|
178 |
+
|
179 |
+
input_flow = flow.clone()
|
180 |
+
ratio_h = output_h / flow_h
|
181 |
+
ratio_w = output_w / flow_w
|
182 |
+
input_flow[:, 0, :, :] *= ratio_w
|
183 |
+
input_flow[:, 1, :, :] *= ratio_h
|
184 |
+
resized_flow = F.interpolate(
|
185 |
+
input=input_flow, size=(output_h, output_w), mode=interp_mode, align_corners=align_corners)
|
186 |
+
return resized_flow
|
187 |
+
|
188 |
+
|
189 |
+
# TODO: may write a cpp file
|
190 |
+
def pixel_unshuffle(x, scale):
|
191 |
+
""" Pixel unshuffle.
|
192 |
+
|
193 |
+
Args:
|
194 |
+
x (Tensor): Input feature with shape (b, c, hh, hw).
|
195 |
+
scale (int): Downsample ratio.
|
196 |
+
|
197 |
+
Returns:
|
198 |
+
Tensor: the pixel unshuffled feature.
|
199 |
+
"""
|
200 |
+
b, c, hh, hw = x.size()
|
201 |
+
out_channel = c * (scale**2)
|
202 |
+
assert hh % scale == 0 and hw % scale == 0
|
203 |
+
h = hh // scale
|
204 |
+
w = hw // scale
|
205 |
+
x_view = x.view(b, c, h, scale, w, scale)
|
206 |
+
return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w)
|
207 |
+
|
208 |
+
|
209 |
+
class DCNv2Pack(ModulatedDeformConvPack):
|
210 |
+
"""Modulated deformable conv for deformable alignment.
|
211 |
+
|
212 |
+
Different from the official DCNv2Pack, which generates offsets and masks
|
213 |
+
from the preceding features, this DCNv2Pack takes another different
|
214 |
+
features to generate offsets and masks.
|
215 |
+
|
216 |
+
Ref:
|
217 |
+
Delving Deep into Deformable Alignment in Video Super-Resolution.
|
218 |
+
"""
|
219 |
+
|
220 |
+
def forward(self, x, feat):
|
221 |
+
out = self.conv_offset(feat)
|
222 |
+
o1, o2, mask = torch.chunk(out, 3, dim=1)
|
223 |
+
offset = torch.cat((o1, o2), dim=1)
|
224 |
+
mask = torch.sigmoid(mask)
|
225 |
+
|
226 |
+
offset_absmean = torch.mean(torch.abs(offset))
|
227 |
+
if offset_absmean > 50:
|
228 |
+
logger = get_root_logger()
|
229 |
+
logger.warning(f'Offset abs mean is {offset_absmean}, larger than 50.')
|
230 |
+
|
231 |
+
if LooseVersion(torchvision.__version__) >= LooseVersion('0.9.0'):
|
232 |
+
return torchvision.ops.deform_conv2d(x, offset, self.weight, self.bias, self.stride, self.padding,
|
233 |
+
self.dilation, mask)
|
234 |
+
else:
|
235 |
+
return modulated_deform_conv(x, offset, mask, self.weight, self.bias, self.stride, self.padding,
|
236 |
+
self.dilation, self.groups, self.deformable_groups)
|
237 |
+
|
238 |
+
|
239 |
+
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
|
240 |
+
# From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/weight_init.py
|
241 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
242 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
243 |
+
def norm_cdf(x):
|
244 |
+
# Computes standard normal cumulative distribution function
|
245 |
+
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
246 |
+
|
247 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
248 |
+
warnings.warn(
|
249 |
+
'mean is more than 2 std from [a, b] in nn.init.trunc_normal_. '
|
250 |
+
'The distribution of values may be incorrect.',
|
251 |
+
stacklevel=2)
|
252 |
+
|
253 |
+
with torch.no_grad():
|
254 |
+
# Values are generated by using a truncated uniform distribution and
|
255 |
+
# then using the inverse CDF for the normal distribution.
|
256 |
+
# Get upper and lower cdf values
|
257 |
+
low = norm_cdf((a - mean) / std)
|
258 |
+
up = norm_cdf((b - mean) / std)
|
259 |
+
|
260 |
+
# Uniformly fill tensor with values from [low, up], then translate to
|
261 |
+
# [2l-1, 2u-1].
|
262 |
+
tensor.uniform_(2 * low - 1, 2 * up - 1)
|
263 |
+
|
264 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
265 |
+
# standard normal
|
266 |
+
tensor.erfinv_()
|
267 |
+
|
268 |
+
# Transform to proper mean, std
|
269 |
+
tensor.mul_(std * math.sqrt(2.))
|
270 |
+
tensor.add_(mean)
|
271 |
+
|
272 |
+
# Clamp to ensure it's in the proper range
|
273 |
+
tensor.clamp_(min=a, max=b)
|
274 |
+
return tensor
|
275 |
+
|
276 |
+
|
277 |
+
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
278 |
+
r"""Fills the input Tensor with values drawn from a truncated
|
279 |
+
normal distribution.
|
280 |
+
|
281 |
+
From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/weight_init.py
|
282 |
+
|
283 |
+
The values are effectively drawn from the
|
284 |
+
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
|
285 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
286 |
+
the bounds. The method used for generating the random values works
|
287 |
+
best when :math:`a \leq \text{mean} \leq b`.
|
288 |
+
|
289 |
+
Args:
|
290 |
+
tensor: an n-dimensional `torch.Tensor`
|
291 |
+
mean: the mean of the normal distribution
|
292 |
+
std: the standard deviation of the normal distribution
|
293 |
+
a: the minimum cutoff value
|
294 |
+
b: the maximum cutoff value
|
295 |
+
|
296 |
+
Examples:
|
297 |
+
>>> w = torch.empty(3, 5)
|
298 |
+
>>> nn.init.trunc_normal_(w)
|
299 |
+
"""
|
300 |
+
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
|
301 |
+
|
302 |
+
|
303 |
+
# From PyTorch
|
304 |
+
def _ntuple(n):
|
305 |
+
|
306 |
+
def parse(x):
|
307 |
+
if isinstance(x, collections.abc.Iterable):
|
308 |
+
return x
|
309 |
+
return tuple(repeat(x, n))
|
310 |
+
|
311 |
+
return parse
|
312 |
+
|
313 |
+
|
314 |
+
to_1tuple = _ntuple(1)
|
315 |
+
to_2tuple = _ntuple(2)
|
316 |
+
to_3tuple = _ntuple(3)
|
317 |
+
to_4tuple = _ntuple(4)
|
318 |
+
to_ntuple = _ntuple
|
CodeFormer/basicsr/archs/codeformer_arch.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from torch import nn, Tensor
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from typing import Optional, List
|
7 |
+
|
8 |
+
from basicsr.archs.vqgan_arch import *
|
9 |
+
from basicsr.utils import get_root_logger
|
10 |
+
from basicsr.utils.registry import ARCH_REGISTRY
|
11 |
+
|
12 |
+
def calc_mean_std(feat, eps=1e-5):
|
13 |
+
"""Calculate mean and std for adaptive_instance_normalization.
|
14 |
+
|
15 |
+
Args:
|
16 |
+
feat (Tensor): 4D tensor.
|
17 |
+
eps (float): A small value added to the variance to avoid
|
18 |
+
divide-by-zero. Default: 1e-5.
|
19 |
+
"""
|
20 |
+
size = feat.size()
|
21 |
+
assert len(size) == 4, 'The input feature should be 4D tensor.'
|
22 |
+
b, c = size[:2]
|
23 |
+
feat_var = feat.view(b, c, -1).var(dim=2) + eps
|
24 |
+
feat_std = feat_var.sqrt().view(b, c, 1, 1)
|
25 |
+
feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1)
|
26 |
+
return feat_mean, feat_std
|
27 |
+
|
28 |
+
|
29 |
+
def adaptive_instance_normalization(content_feat, style_feat):
|
30 |
+
"""Adaptive instance normalization.
|
31 |
+
|
32 |
+
Adjust the reference features to have the similar color and illuminations
|
33 |
+
as those in the degradate features.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
content_feat (Tensor): The reference feature.
|
37 |
+
style_feat (Tensor): The degradate features.
|
38 |
+
"""
|
39 |
+
size = content_feat.size()
|
40 |
+
style_mean, style_std = calc_mean_std(style_feat)
|
41 |
+
content_mean, content_std = calc_mean_std(content_feat)
|
42 |
+
normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size)
|
43 |
+
return normalized_feat * style_std.expand(size) + style_mean.expand(size)
|
44 |
+
|
45 |
+
|
46 |
+
class PositionEmbeddingSine(nn.Module):
|
47 |
+
"""
|
48 |
+
This is a more standard version of the position embedding, very similar to the one
|
49 |
+
used by the Attention is all you need paper, generalized to work on images.
|
50 |
+
"""
|
51 |
+
|
52 |
+
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
|
53 |
+
super().__init__()
|
54 |
+
self.num_pos_feats = num_pos_feats
|
55 |
+
self.temperature = temperature
|
56 |
+
self.normalize = normalize
|
57 |
+
if scale is not None and normalize is False:
|
58 |
+
raise ValueError("normalize should be True if scale is passed")
|
59 |
+
if scale is None:
|
60 |
+
scale = 2 * math.pi
|
61 |
+
self.scale = scale
|
62 |
+
|
63 |
+
def forward(self, x, mask=None):
|
64 |
+
if mask is None:
|
65 |
+
mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool)
|
66 |
+
not_mask = ~mask
|
67 |
+
y_embed = not_mask.cumsum(1, dtype=torch.float32)
|
68 |
+
x_embed = not_mask.cumsum(2, dtype=torch.float32)
|
69 |
+
if self.normalize:
|
70 |
+
eps = 1e-6
|
71 |
+
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
|
72 |
+
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
|
73 |
+
|
74 |
+
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
75 |
+
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
76 |
+
|
77 |
+
pos_x = x_embed[:, :, :, None] / dim_t
|
78 |
+
pos_y = y_embed[:, :, :, None] / dim_t
|
79 |
+
pos_x = torch.stack(
|
80 |
+
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
|
81 |
+
).flatten(3)
|
82 |
+
pos_y = torch.stack(
|
83 |
+
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
|
84 |
+
).flatten(3)
|
85 |
+
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
86 |
+
return pos
|
87 |
+
|
88 |
+
def _get_activation_fn(activation):
|
89 |
+
"""Return an activation function given a string"""
|
90 |
+
if activation == "relu":
|
91 |
+
return F.relu
|
92 |
+
if activation == "gelu":
|
93 |
+
return F.gelu
|
94 |
+
if activation == "glu":
|
95 |
+
return F.glu
|
96 |
+
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
|
97 |
+
|
98 |
+
|
99 |
+
class TransformerSALayer(nn.Module):
|
100 |
+
def __init__(self, embed_dim, nhead=8, dim_mlp=2048, dropout=0.0, activation="gelu"):
|
101 |
+
super().__init__()
|
102 |
+
self.self_attn = nn.MultiheadAttention(embed_dim, nhead, dropout=dropout)
|
103 |
+
# Implementation of Feedforward model - MLP
|
104 |
+
self.linear1 = nn.Linear(embed_dim, dim_mlp)
|
105 |
+
self.dropout = nn.Dropout(dropout)
|
106 |
+
self.linear2 = nn.Linear(dim_mlp, embed_dim)
|
107 |
+
|
108 |
+
self.norm1 = nn.LayerNorm(embed_dim)
|
109 |
+
self.norm2 = nn.LayerNorm(embed_dim)
|
110 |
+
self.dropout1 = nn.Dropout(dropout)
|
111 |
+
self.dropout2 = nn.Dropout(dropout)
|
112 |
+
|
113 |
+
self.activation = _get_activation_fn(activation)
|
114 |
+
|
115 |
+
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
116 |
+
return tensor if pos is None else tensor + pos
|
117 |
+
|
118 |
+
def forward(self, tgt,
|
119 |
+
tgt_mask: Optional[Tensor] = None,
|
120 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
121 |
+
query_pos: Optional[Tensor] = None):
|
122 |
+
|
123 |
+
# self attention
|
124 |
+
tgt2 = self.norm1(tgt)
|
125 |
+
q = k = self.with_pos_embed(tgt2, query_pos)
|
126 |
+
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
|
127 |
+
key_padding_mask=tgt_key_padding_mask)[0]
|
128 |
+
tgt = tgt + self.dropout1(tgt2)
|
129 |
+
|
130 |
+
# ffn
|
131 |
+
tgt2 = self.norm2(tgt)
|
132 |
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
|
133 |
+
tgt = tgt + self.dropout2(tgt2)
|
134 |
+
return tgt
|
135 |
+
|
136 |
+
class Fuse_sft_block(nn.Module):
|
137 |
+
def __init__(self, in_ch, out_ch):
|
138 |
+
super().__init__()
|
139 |
+
self.encode_enc = ResBlock(2*in_ch, out_ch)
|
140 |
+
|
141 |
+
self.scale = nn.Sequential(
|
142 |
+
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
|
143 |
+
nn.LeakyReLU(0.2, True),
|
144 |
+
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1))
|
145 |
+
|
146 |
+
self.shift = nn.Sequential(
|
147 |
+
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
|
148 |
+
nn.LeakyReLU(0.2, True),
|
149 |
+
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1))
|
150 |
+
|
151 |
+
def forward(self, enc_feat, dec_feat, w=1):
|
152 |
+
enc_feat = self.encode_enc(torch.cat([enc_feat, dec_feat], dim=1))
|
153 |
+
scale = self.scale(enc_feat)
|
154 |
+
shift = self.shift(enc_feat)
|
155 |
+
residual = w * (dec_feat * scale + shift)
|
156 |
+
out = dec_feat + residual
|
157 |
+
return out
|
158 |
+
|
159 |
+
|
160 |
+
@ARCH_REGISTRY.register()
|
161 |
+
class CodeFormer(VQAutoEncoder):
|
162 |
+
def __init__(self, dim_embd=512, n_head=8, n_layers=9,
|
163 |
+
codebook_size=1024, latent_size=256,
|
164 |
+
connect_list=['32', '64', '128', '256'],
|
165 |
+
fix_modules=['quantize','generator']):
|
166 |
+
super(CodeFormer, self).__init__(512, 64, [1, 2, 2, 4, 4, 8], 'nearest',2, [16], codebook_size)
|
167 |
+
|
168 |
+
if fix_modules is not None:
|
169 |
+
for module in fix_modules:
|
170 |
+
for param in getattr(self, module).parameters():
|
171 |
+
param.requires_grad = False
|
172 |
+
|
173 |
+
self.connect_list = connect_list
|
174 |
+
self.n_layers = n_layers
|
175 |
+
self.dim_embd = dim_embd
|
176 |
+
self.dim_mlp = dim_embd*2
|
177 |
+
|
178 |
+
self.position_emb = nn.Parameter(torch.zeros(latent_size, self.dim_embd))
|
179 |
+
self.feat_emb = nn.Linear(256, self.dim_embd)
|
180 |
+
|
181 |
+
# transformer
|
182 |
+
self.ft_layers = nn.Sequential(*[TransformerSALayer(embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0)
|
183 |
+
for _ in range(self.n_layers)])
|
184 |
+
|
185 |
+
# logits_predict head
|
186 |
+
self.idx_pred_layer = nn.Sequential(
|
187 |
+
nn.LayerNorm(dim_embd),
|
188 |
+
nn.Linear(dim_embd, codebook_size, bias=False))
|
189 |
+
|
190 |
+
self.channels = {
|
191 |
+
'16': 512,
|
192 |
+
'32': 256,
|
193 |
+
'64': 256,
|
194 |
+
'128': 128,
|
195 |
+
'256': 128,
|
196 |
+
'512': 64,
|
197 |
+
}
|
198 |
+
|
199 |
+
# after second residual block for > 16, before attn layer for ==16
|
200 |
+
self.fuse_encoder_block = {'512':2, '256':5, '128':8, '64':11, '32':14, '16':18}
|
201 |
+
# after first residual block for > 16, before attn layer for ==16
|
202 |
+
self.fuse_generator_block = {'16':6, '32': 9, '64':12, '128':15, '256':18, '512':21}
|
203 |
+
|
204 |
+
# fuse_convs_dict
|
205 |
+
self.fuse_convs_dict = nn.ModuleDict()
|
206 |
+
for f_size in self.connect_list:
|
207 |
+
in_ch = self.channels[f_size]
|
208 |
+
self.fuse_convs_dict[f_size] = Fuse_sft_block(in_ch, in_ch)
|
209 |
+
|
210 |
+
def _init_weights(self, module):
|
211 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
212 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
213 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
214 |
+
module.bias.data.zero_()
|
215 |
+
elif isinstance(module, nn.LayerNorm):
|
216 |
+
module.bias.data.zero_()
|
217 |
+
module.weight.data.fill_(1.0)
|
218 |
+
|
219 |
+
def forward(self, x, w=0, detach_16=True, code_only=False, adain=False):
|
220 |
+
# ################### Encoder #####################
|
221 |
+
enc_feat_dict = {}
|
222 |
+
out_list = [self.fuse_encoder_block[f_size] for f_size in self.connect_list]
|
223 |
+
for i, block in enumerate(self.encoder.blocks):
|
224 |
+
x = block(x)
|
225 |
+
if i in out_list:
|
226 |
+
enc_feat_dict[str(x.shape[-1])] = x.clone()
|
227 |
+
|
228 |
+
lq_feat = x
|
229 |
+
# ################# Transformer ###################
|
230 |
+
# quant_feat, codebook_loss, quant_stats = self.quantize(lq_feat)
|
231 |
+
pos_emb = self.position_emb.unsqueeze(1).repeat(1,x.shape[0],1)
|
232 |
+
# BCHW -> BC(HW) -> (HW)BC
|
233 |
+
feat_emb = self.feat_emb(lq_feat.flatten(2).permute(2,0,1))
|
234 |
+
query_emb = feat_emb
|
235 |
+
# Transformer encoder
|
236 |
+
for layer in self.ft_layers:
|
237 |
+
query_emb = layer(query_emb, query_pos=pos_emb)
|
238 |
+
|
239 |
+
# output logits
|
240 |
+
logits = self.idx_pred_layer(query_emb) # (hw)bn
|
241 |
+
logits = logits.permute(1,0,2) # (hw)bn -> b(hw)n
|
242 |
+
|
243 |
+
if code_only: # for training stage II
|
244 |
+
# logits doesn't need softmax before cross_entropy loss
|
245 |
+
return logits, lq_feat
|
246 |
+
|
247 |
+
# ################# Quantization ###################
|
248 |
+
# if self.training:
|
249 |
+
# quant_feat = torch.einsum('btn,nc->btc', [soft_one_hot, self.quantize.embedding.weight])
|
250 |
+
# # b(hw)c -> bc(hw) -> bchw
|
251 |
+
# quant_feat = quant_feat.permute(0,2,1).view(lq_feat.shape)
|
252 |
+
# ------------
|
253 |
+
soft_one_hot = F.softmax(logits, dim=2)
|
254 |
+
_, top_idx = torch.topk(soft_one_hot, 1, dim=2)
|
255 |
+
quant_feat = self.quantize.get_codebook_feat(top_idx, shape=[x.shape[0],16,16,256])
|
256 |
+
# preserve gradients
|
257 |
+
# quant_feat = lq_feat + (quant_feat - lq_feat).detach()
|
258 |
+
|
259 |
+
if detach_16:
|
260 |
+
quant_feat = quant_feat.detach() # for training stage III
|
261 |
+
if adain:
|
262 |
+
quant_feat = adaptive_instance_normalization(quant_feat, lq_feat)
|
263 |
+
|
264 |
+
# ################## Generator ####################
|
265 |
+
x = quant_feat
|
266 |
+
fuse_list = [self.fuse_generator_block[f_size] for f_size in self.connect_list]
|
267 |
+
|
268 |
+
for i, block in enumerate(self.generator.blocks):
|
269 |
+
x = block(x)
|
270 |
+
if i in fuse_list: # fuse after i-th block
|
271 |
+
f_size = str(x.shape[-1])
|
272 |
+
if w>0:
|
273 |
+
x = self.fuse_convs_dict[f_size](enc_feat_dict[f_size].detach(), x, w)
|
274 |
+
out = x
|
275 |
+
# logits doesn't need softmax before cross_entropy loss
|
276 |
+
return out, logits, lq_feat
|
CodeFormer/basicsr/archs/rrdbnet_arch.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn as nn
|
3 |
+
from torch.nn import functional as F
|
4 |
+
|
5 |
+
from basicsr.utils.registry import ARCH_REGISTRY
|
6 |
+
from .arch_util import default_init_weights, make_layer, pixel_unshuffle
|
7 |
+
|
8 |
+
|
9 |
+
class ResidualDenseBlock(nn.Module):
|
10 |
+
"""Residual Dense Block.
|
11 |
+
|
12 |
+
Used in RRDB block in ESRGAN.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
num_feat (int): Channel number of intermediate features.
|
16 |
+
num_grow_ch (int): Channels for each growth.
|
17 |
+
"""
|
18 |
+
|
19 |
+
def __init__(self, num_feat=64, num_grow_ch=32):
|
20 |
+
super(ResidualDenseBlock, self).__init__()
|
21 |
+
self.conv1 = nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1)
|
22 |
+
self.conv2 = nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1)
|
23 |
+
self.conv3 = nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1)
|
24 |
+
self.conv4 = nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1)
|
25 |
+
self.conv5 = nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1)
|
26 |
+
|
27 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
28 |
+
|
29 |
+
# initialization
|
30 |
+
default_init_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
x1 = self.lrelu(self.conv1(x))
|
34 |
+
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
|
35 |
+
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
|
36 |
+
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
|
37 |
+
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
|
38 |
+
# Emperically, we use 0.2 to scale the residual for better performance
|
39 |
+
return x5 * 0.2 + x
|
40 |
+
|
41 |
+
|
42 |
+
class RRDB(nn.Module):
|
43 |
+
"""Residual in Residual Dense Block.
|
44 |
+
|
45 |
+
Used in RRDB-Net in ESRGAN.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
num_feat (int): Channel number of intermediate features.
|
49 |
+
num_grow_ch (int): Channels for each growth.
|
50 |
+
"""
|
51 |
+
|
52 |
+
def __init__(self, num_feat, num_grow_ch=32):
|
53 |
+
super(RRDB, self).__init__()
|
54 |
+
self.rdb1 = ResidualDenseBlock(num_feat, num_grow_ch)
|
55 |
+
self.rdb2 = ResidualDenseBlock(num_feat, num_grow_ch)
|
56 |
+
self.rdb3 = ResidualDenseBlock(num_feat, num_grow_ch)
|
57 |
+
|
58 |
+
def forward(self, x):
|
59 |
+
out = self.rdb1(x)
|
60 |
+
out = self.rdb2(out)
|
61 |
+
out = self.rdb3(out)
|
62 |
+
# Emperically, we use 0.2 to scale the residual for better performance
|
63 |
+
return out * 0.2 + x
|
64 |
+
|
65 |
+
|
66 |
+
@ARCH_REGISTRY.register()
|
67 |
+
class RRDBNet(nn.Module):
|
68 |
+
"""Networks consisting of Residual in Residual Dense Block, which is used
|
69 |
+
in ESRGAN.
|
70 |
+
|
71 |
+
ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks.
|
72 |
+
|
73 |
+
We extend ESRGAN for scale x2 and scale x1.
|
74 |
+
Note: This is one option for scale 1, scale 2 in RRDBNet.
|
75 |
+
We first employ the pixel-unshuffle (an inverse operation of pixelshuffle to reduce the spatial size
|
76 |
+
and enlarge the channel size before feeding inputs into the main ESRGAN architecture.
|
77 |
+
|
78 |
+
Args:
|
79 |
+
num_in_ch (int): Channel number of inputs.
|
80 |
+
num_out_ch (int): Channel number of outputs.
|
81 |
+
num_feat (int): Channel number of intermediate features.
|
82 |
+
Default: 64
|
83 |
+
num_block (int): Block number in the trunk network. Defaults: 23
|
84 |
+
num_grow_ch (int): Channels for each growth. Default: 32.
|
85 |
+
"""
|
86 |
+
|
87 |
+
def __init__(self, num_in_ch, num_out_ch, scale=4, num_feat=64, num_block=23, num_grow_ch=32):
|
88 |
+
super(RRDBNet, self).__init__()
|
89 |
+
self.scale = scale
|
90 |
+
if scale == 2:
|
91 |
+
num_in_ch = num_in_ch * 4
|
92 |
+
elif scale == 1:
|
93 |
+
num_in_ch = num_in_ch * 16
|
94 |
+
self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
|
95 |
+
self.body = make_layer(RRDB, num_block, num_feat=num_feat, num_grow_ch=num_grow_ch)
|
96 |
+
self.conv_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
97 |
+
# upsample
|
98 |
+
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
99 |
+
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
100 |
+
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
101 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
102 |
+
|
103 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
104 |
+
|
105 |
+
def forward(self, x):
|
106 |
+
if self.scale == 2:
|
107 |
+
feat = pixel_unshuffle(x, scale=2)
|
108 |
+
elif self.scale == 1:
|
109 |
+
feat = pixel_unshuffle(x, scale=4)
|
110 |
+
else:
|
111 |
+
feat = x
|
112 |
+
feat = self.conv_first(feat)
|
113 |
+
body_feat = self.conv_body(self.body(feat))
|
114 |
+
feat = feat + body_feat
|
115 |
+
# upsample
|
116 |
+
feat = self.lrelu(self.conv_up1(F.interpolate(feat, scale_factor=2, mode='nearest')))
|
117 |
+
feat = self.lrelu(self.conv_up2(F.interpolate(feat, scale_factor=2, mode='nearest')))
|
118 |
+
out = self.conv_last(self.lrelu(self.conv_hr(feat)))
|
119 |
+
return out
|
CodeFormer/basicsr/archs/vgg_arch.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from collections import OrderedDict
|
4 |
+
from torch import nn as nn
|
5 |
+
from torchvision.models import vgg as vgg
|
6 |
+
|
7 |
+
from basicsr.utils.registry import ARCH_REGISTRY
|
8 |
+
|
9 |
+
VGG_PRETRAIN_PATH = 'experiments/pretrained_models/vgg19-dcbb9e9d.pth'
|
10 |
+
NAMES = {
|
11 |
+
'vgg11': [
|
12 |
+
'conv1_1', 'relu1_1', 'pool1', 'conv2_1', 'relu2_1', 'pool2', 'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2',
|
13 |
+
'pool3', 'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'pool4', 'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2',
|
14 |
+
'pool5'
|
15 |
+
],
|
16 |
+
'vgg13': [
|
17 |
+
'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1', 'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
|
18 |
+
'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'pool3', 'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'pool4',
|
19 |
+
'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'pool5'
|
20 |
+
],
|
21 |
+
'vgg16': [
|
22 |
+
'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1', 'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
|
23 |
+
'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3', 'relu3_3', 'pool3', 'conv4_1', 'relu4_1', 'conv4_2',
|
24 |
+
'relu4_2', 'conv4_3', 'relu4_3', 'pool4', 'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3', 'relu5_3',
|
25 |
+
'pool5'
|
26 |
+
],
|
27 |
+
'vgg19': [
|
28 |
+
'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1', 'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
|
29 |
+
'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3', 'relu3_3', 'conv3_4', 'relu3_4', 'pool3', 'conv4_1',
|
30 |
+
'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3', 'relu4_3', 'conv4_4', 'relu4_4', 'pool4', 'conv5_1', 'relu5_1',
|
31 |
+
'conv5_2', 'relu5_2', 'conv5_3', 'relu5_3', 'conv5_4', 'relu5_4', 'pool5'
|
32 |
+
]
|
33 |
+
}
|
34 |
+
|
35 |
+
|
36 |
+
def insert_bn(names):
|
37 |
+
"""Insert bn layer after each conv.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
names (list): The list of layer names.
|
41 |
+
|
42 |
+
Returns:
|
43 |
+
list: The list of layer names with bn layers.
|
44 |
+
"""
|
45 |
+
names_bn = []
|
46 |
+
for name in names:
|
47 |
+
names_bn.append(name)
|
48 |
+
if 'conv' in name:
|
49 |
+
position = name.replace('conv', '')
|
50 |
+
names_bn.append('bn' + position)
|
51 |
+
return names_bn
|
52 |
+
|
53 |
+
|
54 |
+
@ARCH_REGISTRY.register()
|
55 |
+
class VGGFeatureExtractor(nn.Module):
|
56 |
+
"""VGG network for feature extraction.
|
57 |
+
|
58 |
+
In this implementation, we allow users to choose whether use normalization
|
59 |
+
in the input feature and the type of vgg network. Note that the pretrained
|
60 |
+
path must fit the vgg type.
|
61 |
+
|
62 |
+
Args:
|
63 |
+
layer_name_list (list[str]): Forward function returns the corresponding
|
64 |
+
features according to the layer_name_list.
|
65 |
+
Example: {'relu1_1', 'relu2_1', 'relu3_1'}.
|
66 |
+
vgg_type (str): Set the type of vgg network. Default: 'vgg19'.
|
67 |
+
use_input_norm (bool): If True, normalize the input image. Importantly,
|
68 |
+
the input feature must in the range [0, 1]. Default: True.
|
69 |
+
range_norm (bool): If True, norm images with range [-1, 1] to [0, 1].
|
70 |
+
Default: False.
|
71 |
+
requires_grad (bool): If true, the parameters of VGG network will be
|
72 |
+
optimized. Default: False.
|
73 |
+
remove_pooling (bool): If true, the max pooling operations in VGG net
|
74 |
+
will be removed. Default: False.
|
75 |
+
pooling_stride (int): The stride of max pooling operation. Default: 2.
|
76 |
+
"""
|
77 |
+
|
78 |
+
def __init__(self,
|
79 |
+
layer_name_list,
|
80 |
+
vgg_type='vgg19',
|
81 |
+
use_input_norm=True,
|
82 |
+
range_norm=False,
|
83 |
+
requires_grad=False,
|
84 |
+
remove_pooling=False,
|
85 |
+
pooling_stride=2):
|
86 |
+
super(VGGFeatureExtractor, self).__init__()
|
87 |
+
|
88 |
+
self.layer_name_list = layer_name_list
|
89 |
+
self.use_input_norm = use_input_norm
|
90 |
+
self.range_norm = range_norm
|
91 |
+
|
92 |
+
self.names = NAMES[vgg_type.replace('_bn', '')]
|
93 |
+
if 'bn' in vgg_type:
|
94 |
+
self.names = insert_bn(self.names)
|
95 |
+
|
96 |
+
# only borrow layers that will be used to avoid unused params
|
97 |
+
max_idx = 0
|
98 |
+
for v in layer_name_list:
|
99 |
+
idx = self.names.index(v)
|
100 |
+
if idx > max_idx:
|
101 |
+
max_idx = idx
|
102 |
+
|
103 |
+
if os.path.exists(VGG_PRETRAIN_PATH):
|
104 |
+
vgg_net = getattr(vgg, vgg_type)(pretrained=False)
|
105 |
+
state_dict = torch.load(VGG_PRETRAIN_PATH, map_location=lambda storage, loc: storage)
|
106 |
+
vgg_net.load_state_dict(state_dict)
|
107 |
+
else:
|
108 |
+
vgg_net = getattr(vgg, vgg_type)(pretrained=True)
|
109 |
+
|
110 |
+
features = vgg_net.features[:max_idx + 1]
|
111 |
+
|
112 |
+
modified_net = OrderedDict()
|
113 |
+
for k, v in zip(self.names, features):
|
114 |
+
if 'pool' in k:
|
115 |
+
# if remove_pooling is true, pooling operation will be removed
|
116 |
+
if remove_pooling:
|
117 |
+
continue
|
118 |
+
else:
|
119 |
+
# in some cases, we may want to change the default stride
|
120 |
+
modified_net[k] = nn.MaxPool2d(kernel_size=2, stride=pooling_stride)
|
121 |
+
else:
|
122 |
+
modified_net[k] = v
|
123 |
+
|
124 |
+
self.vgg_net = nn.Sequential(modified_net)
|
125 |
+
|
126 |
+
if not requires_grad:
|
127 |
+
self.vgg_net.eval()
|
128 |
+
for param in self.parameters():
|
129 |
+
param.requires_grad = False
|
130 |
+
else:
|
131 |
+
self.vgg_net.train()
|
132 |
+
for param in self.parameters():
|
133 |
+
param.requires_grad = True
|
134 |
+
|
135 |
+
if self.use_input_norm:
|
136 |
+
# the mean is for image with range [0, 1]
|
137 |
+
self.register_buffer('mean', torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1))
|
138 |
+
# the std is for image with range [0, 1]
|
139 |
+
self.register_buffer('std', torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1))
|
140 |
+
|
141 |
+
def forward(self, x):
|
142 |
+
"""Forward function.
|
143 |
+
|
144 |
+
Args:
|
145 |
+
x (Tensor): Input tensor with shape (n, c, h, w).
|
146 |
+
|
147 |
+
Returns:
|
148 |
+
Tensor: Forward results.
|
149 |
+
"""
|
150 |
+
if self.range_norm:
|
151 |
+
x = (x + 1) / 2
|
152 |
+
if self.use_input_norm:
|
153 |
+
x = (x - self.mean) / self.std
|
154 |
+
output = {}
|
155 |
+
|
156 |
+
for key, layer in self.vgg_net._modules.items():
|
157 |
+
x = layer(x)
|
158 |
+
if key in self.layer_name_list:
|
159 |
+
output[key] = x.clone()
|
160 |
+
|
161 |
+
return output
|
CodeFormer/basicsr/archs/vqgan_arch.py
ADDED
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
VQGAN code, adapted from the original created by the Unleashing Transformers authors:
|
3 |
+
https://github.com/samb-t/unleashing-transformers/blob/master/models/vqgan.py
|
4 |
+
|
5 |
+
'''
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import copy
|
11 |
+
from basicsr.utils import get_root_logger
|
12 |
+
from basicsr.utils.registry import ARCH_REGISTRY
|
13 |
+
|
14 |
+
def normalize(in_channels):
|
15 |
+
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
16 |
+
|
17 |
+
|
18 |
+
@torch.jit.script
|
19 |
+
def swish(x):
|
20 |
+
return x*torch.sigmoid(x)
|
21 |
+
|
22 |
+
|
23 |
+
# Define VQVAE classes
|
24 |
+
class VectorQuantizer(nn.Module):
|
25 |
+
def __init__(self, codebook_size, emb_dim, beta):
|
26 |
+
super(VectorQuantizer, self).__init__()
|
27 |
+
self.codebook_size = codebook_size # number of embeddings
|
28 |
+
self.emb_dim = emb_dim # dimension of embedding
|
29 |
+
self.beta = beta # commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2
|
30 |
+
self.embedding = nn.Embedding(self.codebook_size, self.emb_dim)
|
31 |
+
self.embedding.weight.data.uniform_(-1.0 / self.codebook_size, 1.0 / self.codebook_size)
|
32 |
+
|
33 |
+
def forward(self, z):
|
34 |
+
# reshape z -> (batch, height, width, channel) and flatten
|
35 |
+
z = z.permute(0, 2, 3, 1).contiguous()
|
36 |
+
z_flattened = z.view(-1, self.emb_dim)
|
37 |
+
|
38 |
+
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
39 |
+
d = (z_flattened ** 2).sum(dim=1, keepdim=True) + (self.embedding.weight**2).sum(1) - \
|
40 |
+
2 * torch.matmul(z_flattened, self.embedding.weight.t())
|
41 |
+
|
42 |
+
mean_distance = torch.mean(d)
|
43 |
+
# find closest encodings
|
44 |
+
# min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1)
|
45 |
+
min_encoding_scores, min_encoding_indices = torch.topk(d, 1, dim=1, largest=False)
|
46 |
+
# [0-1], higher score, higher confidence
|
47 |
+
min_encoding_scores = torch.exp(-min_encoding_scores/10)
|
48 |
+
|
49 |
+
min_encodings = torch.zeros(min_encoding_indices.shape[0], self.codebook_size).to(z)
|
50 |
+
min_encodings.scatter_(1, min_encoding_indices, 1)
|
51 |
+
|
52 |
+
# get quantized latent vectors
|
53 |
+
z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape)
|
54 |
+
# compute loss for embedding
|
55 |
+
loss = torch.mean((z_q.detach()-z)**2) + self.beta * torch.mean((z_q - z.detach()) ** 2)
|
56 |
+
# preserve gradients
|
57 |
+
z_q = z + (z_q - z).detach()
|
58 |
+
|
59 |
+
# perplexity
|
60 |
+
e_mean = torch.mean(min_encodings, dim=0)
|
61 |
+
perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10)))
|
62 |
+
# reshape back to match original input shape
|
63 |
+
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
64 |
+
|
65 |
+
return z_q, loss, {
|
66 |
+
"perplexity": perplexity,
|
67 |
+
"min_encodings": min_encodings,
|
68 |
+
"min_encoding_indices": min_encoding_indices,
|
69 |
+
"min_encoding_scores": min_encoding_scores,
|
70 |
+
"mean_distance": mean_distance
|
71 |
+
}
|
72 |
+
|
73 |
+
def get_codebook_feat(self, indices, shape):
|
74 |
+
# input indices: batch*token_num -> (batch*token_num)*1
|
75 |
+
# shape: batch, height, width, channel
|
76 |
+
indices = indices.view(-1,1)
|
77 |
+
min_encodings = torch.zeros(indices.shape[0], self.codebook_size).to(indices)
|
78 |
+
min_encodings.scatter_(1, indices, 1)
|
79 |
+
# get quantized latent vectors
|
80 |
+
z_q = torch.matmul(min_encodings.float(), self.embedding.weight)
|
81 |
+
|
82 |
+
if shape is not None: # reshape back to match original input shape
|
83 |
+
z_q = z_q.view(shape).permute(0, 3, 1, 2).contiguous()
|
84 |
+
|
85 |
+
return z_q
|
86 |
+
|
87 |
+
|
88 |
+
class GumbelQuantizer(nn.Module):
|
89 |
+
def __init__(self, codebook_size, emb_dim, num_hiddens, straight_through=False, kl_weight=5e-4, temp_init=1.0):
|
90 |
+
super().__init__()
|
91 |
+
self.codebook_size = codebook_size # number of embeddings
|
92 |
+
self.emb_dim = emb_dim # dimension of embedding
|
93 |
+
self.straight_through = straight_through
|
94 |
+
self.temperature = temp_init
|
95 |
+
self.kl_weight = kl_weight
|
96 |
+
self.proj = nn.Conv2d(num_hiddens, codebook_size, 1) # projects last encoder layer to quantized logits
|
97 |
+
self.embed = nn.Embedding(codebook_size, emb_dim)
|
98 |
+
|
99 |
+
def forward(self, z):
|
100 |
+
hard = self.straight_through if self.training else True
|
101 |
+
|
102 |
+
logits = self.proj(z)
|
103 |
+
|
104 |
+
soft_one_hot = F.gumbel_softmax(logits, tau=self.temperature, dim=1, hard=hard)
|
105 |
+
|
106 |
+
z_q = torch.einsum("b n h w, n d -> b d h w", soft_one_hot, self.embed.weight)
|
107 |
+
|
108 |
+
# + kl divergence to the prior loss
|
109 |
+
qy = F.softmax(logits, dim=1)
|
110 |
+
diff = self.kl_weight * torch.sum(qy * torch.log(qy * self.codebook_size + 1e-10), dim=1).mean()
|
111 |
+
min_encoding_indices = soft_one_hot.argmax(dim=1)
|
112 |
+
|
113 |
+
return z_q, diff, {
|
114 |
+
"min_encoding_indices": min_encoding_indices
|
115 |
+
}
|
116 |
+
|
117 |
+
|
118 |
+
class Downsample(nn.Module):
|
119 |
+
def __init__(self, in_channels):
|
120 |
+
super().__init__()
|
121 |
+
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
|
122 |
+
|
123 |
+
def forward(self, x):
|
124 |
+
pad = (0, 1, 0, 1)
|
125 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
126 |
+
x = self.conv(x)
|
127 |
+
return x
|
128 |
+
|
129 |
+
|
130 |
+
class Upsample(nn.Module):
|
131 |
+
def __init__(self, in_channels):
|
132 |
+
super().__init__()
|
133 |
+
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
|
134 |
+
|
135 |
+
def forward(self, x):
|
136 |
+
x = F.interpolate(x, scale_factor=2.0, mode="nearest")
|
137 |
+
x = self.conv(x)
|
138 |
+
|
139 |
+
return x
|
140 |
+
|
141 |
+
|
142 |
+
class ResBlock(nn.Module):
|
143 |
+
def __init__(self, in_channels, out_channels=None):
|
144 |
+
super(ResBlock, self).__init__()
|
145 |
+
self.in_channels = in_channels
|
146 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
147 |
+
self.norm1 = normalize(in_channels)
|
148 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
149 |
+
self.norm2 = normalize(out_channels)
|
150 |
+
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
151 |
+
if self.in_channels != self.out_channels:
|
152 |
+
self.conv_out = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
153 |
+
|
154 |
+
def forward(self, x_in):
|
155 |
+
x = x_in
|
156 |
+
x = self.norm1(x)
|
157 |
+
x = swish(x)
|
158 |
+
x = self.conv1(x)
|
159 |
+
x = self.norm2(x)
|
160 |
+
x = swish(x)
|
161 |
+
x = self.conv2(x)
|
162 |
+
if self.in_channels != self.out_channels:
|
163 |
+
x_in = self.conv_out(x_in)
|
164 |
+
|
165 |
+
return x + x_in
|
166 |
+
|
167 |
+
|
168 |
+
class AttnBlock(nn.Module):
|
169 |
+
def __init__(self, in_channels):
|
170 |
+
super().__init__()
|
171 |
+
self.in_channels = in_channels
|
172 |
+
|
173 |
+
self.norm = normalize(in_channels)
|
174 |
+
self.q = torch.nn.Conv2d(
|
175 |
+
in_channels,
|
176 |
+
in_channels,
|
177 |
+
kernel_size=1,
|
178 |
+
stride=1,
|
179 |
+
padding=0
|
180 |
+
)
|
181 |
+
self.k = torch.nn.Conv2d(
|
182 |
+
in_channels,
|
183 |
+
in_channels,
|
184 |
+
kernel_size=1,
|
185 |
+
stride=1,
|
186 |
+
padding=0
|
187 |
+
)
|
188 |
+
self.v = torch.nn.Conv2d(
|
189 |
+
in_channels,
|
190 |
+
in_channels,
|
191 |
+
kernel_size=1,
|
192 |
+
stride=1,
|
193 |
+
padding=0
|
194 |
+
)
|
195 |
+
self.proj_out = torch.nn.Conv2d(
|
196 |
+
in_channels,
|
197 |
+
in_channels,
|
198 |
+
kernel_size=1,
|
199 |
+
stride=1,
|
200 |
+
padding=0
|
201 |
+
)
|
202 |
+
|
203 |
+
def forward(self, x):
|
204 |
+
h_ = x
|
205 |
+
h_ = self.norm(h_)
|
206 |
+
q = self.q(h_)
|
207 |
+
k = self.k(h_)
|
208 |
+
v = self.v(h_)
|
209 |
+
|
210 |
+
# compute attention
|
211 |
+
b, c, h, w = q.shape
|
212 |
+
q = q.reshape(b, c, h*w)
|
213 |
+
q = q.permute(0, 2, 1)
|
214 |
+
k = k.reshape(b, c, h*w)
|
215 |
+
w_ = torch.bmm(q, k)
|
216 |
+
w_ = w_ * (int(c)**(-0.5))
|
217 |
+
w_ = F.softmax(w_, dim=2)
|
218 |
+
|
219 |
+
# attend to values
|
220 |
+
v = v.reshape(b, c, h*w)
|
221 |
+
w_ = w_.permute(0, 2, 1)
|
222 |
+
h_ = torch.bmm(v, w_)
|
223 |
+
h_ = h_.reshape(b, c, h, w)
|
224 |
+
|
225 |
+
h_ = self.proj_out(h_)
|
226 |
+
|
227 |
+
return x+h_
|
228 |
+
|
229 |
+
|
230 |
+
class Encoder(nn.Module):
|
231 |
+
def __init__(self, in_channels, nf, emb_dim, ch_mult, num_res_blocks, resolution, attn_resolutions):
|
232 |
+
super().__init__()
|
233 |
+
self.nf = nf
|
234 |
+
self.num_resolutions = len(ch_mult)
|
235 |
+
self.num_res_blocks = num_res_blocks
|
236 |
+
self.resolution = resolution
|
237 |
+
self.attn_resolutions = attn_resolutions
|
238 |
+
|
239 |
+
curr_res = self.resolution
|
240 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
241 |
+
|
242 |
+
blocks = []
|
243 |
+
# initial convultion
|
244 |
+
blocks.append(nn.Conv2d(in_channels, nf, kernel_size=3, stride=1, padding=1))
|
245 |
+
|
246 |
+
# residual and downsampling blocks, with attention on smaller res (16x16)
|
247 |
+
for i in range(self.num_resolutions):
|
248 |
+
block_in_ch = nf * in_ch_mult[i]
|
249 |
+
block_out_ch = nf * ch_mult[i]
|
250 |
+
for _ in range(self.num_res_blocks):
|
251 |
+
blocks.append(ResBlock(block_in_ch, block_out_ch))
|
252 |
+
block_in_ch = block_out_ch
|
253 |
+
if curr_res in attn_resolutions:
|
254 |
+
blocks.append(AttnBlock(block_in_ch))
|
255 |
+
|
256 |
+
if i != self.num_resolutions - 1:
|
257 |
+
blocks.append(Downsample(block_in_ch))
|
258 |
+
curr_res = curr_res // 2
|
259 |
+
|
260 |
+
# non-local attention block
|
261 |
+
blocks.append(ResBlock(block_in_ch, block_in_ch))
|
262 |
+
blocks.append(AttnBlock(block_in_ch))
|
263 |
+
blocks.append(ResBlock(block_in_ch, block_in_ch))
|
264 |
+
|
265 |
+
# normalise and convert to latent size
|
266 |
+
blocks.append(normalize(block_in_ch))
|
267 |
+
blocks.append(nn.Conv2d(block_in_ch, emb_dim, kernel_size=3, stride=1, padding=1))
|
268 |
+
self.blocks = nn.ModuleList(blocks)
|
269 |
+
|
270 |
+
def forward(self, x):
|
271 |
+
for block in self.blocks:
|
272 |
+
x = block(x)
|
273 |
+
|
274 |
+
return x
|
275 |
+
|
276 |
+
|
277 |
+
class Generator(nn.Module):
|
278 |
+
def __init__(self, nf, emb_dim, ch_mult, res_blocks, img_size, attn_resolutions):
|
279 |
+
super().__init__()
|
280 |
+
self.nf = nf
|
281 |
+
self.ch_mult = ch_mult
|
282 |
+
self.num_resolutions = len(self.ch_mult)
|
283 |
+
self.num_res_blocks = res_blocks
|
284 |
+
self.resolution = img_size
|
285 |
+
self.attn_resolutions = attn_resolutions
|
286 |
+
self.in_channels = emb_dim
|
287 |
+
self.out_channels = 3
|
288 |
+
block_in_ch = self.nf * self.ch_mult[-1]
|
289 |
+
curr_res = self.resolution // 2 ** (self.num_resolutions-1)
|
290 |
+
|
291 |
+
blocks = []
|
292 |
+
# initial conv
|
293 |
+
blocks.append(nn.Conv2d(self.in_channels, block_in_ch, kernel_size=3, stride=1, padding=1))
|
294 |
+
|
295 |
+
# non-local attention block
|
296 |
+
blocks.append(ResBlock(block_in_ch, block_in_ch))
|
297 |
+
blocks.append(AttnBlock(block_in_ch))
|
298 |
+
blocks.append(ResBlock(block_in_ch, block_in_ch))
|
299 |
+
|
300 |
+
for i in reversed(range(self.num_resolutions)):
|
301 |
+
block_out_ch = self.nf * self.ch_mult[i]
|
302 |
+
|
303 |
+
for _ in range(self.num_res_blocks):
|
304 |
+
blocks.append(ResBlock(block_in_ch, block_out_ch))
|
305 |
+
block_in_ch = block_out_ch
|
306 |
+
|
307 |
+
if curr_res in self.attn_resolutions:
|
308 |
+
blocks.append(AttnBlock(block_in_ch))
|
309 |
+
|
310 |
+
if i != 0:
|
311 |
+
blocks.append(Upsample(block_in_ch))
|
312 |
+
curr_res = curr_res * 2
|
313 |
+
|
314 |
+
blocks.append(normalize(block_in_ch))
|
315 |
+
blocks.append(nn.Conv2d(block_in_ch, self.out_channels, kernel_size=3, stride=1, padding=1))
|
316 |
+
|
317 |
+
self.blocks = nn.ModuleList(blocks)
|
318 |
+
|
319 |
+
|
320 |
+
def forward(self, x):
|
321 |
+
for block in self.blocks:
|
322 |
+
x = block(x)
|
323 |
+
|
324 |
+
return x
|
325 |
+
|
326 |
+
|
327 |
+
@ARCH_REGISTRY.register()
|
328 |
+
class VQAutoEncoder(nn.Module):
|
329 |
+
def __init__(self, img_size, nf, ch_mult, quantizer="nearest", res_blocks=2, attn_resolutions=[16], codebook_size=1024, emb_dim=256,
|
330 |
+
beta=0.25, gumbel_straight_through=False, gumbel_kl_weight=1e-8, model_path=None):
|
331 |
+
super().__init__()
|
332 |
+
logger = get_root_logger()
|
333 |
+
self.in_channels = 3
|
334 |
+
self.nf = nf
|
335 |
+
self.n_blocks = res_blocks
|
336 |
+
self.codebook_size = codebook_size
|
337 |
+
self.embed_dim = emb_dim
|
338 |
+
self.ch_mult = ch_mult
|
339 |
+
self.resolution = img_size
|
340 |
+
self.attn_resolutions = attn_resolutions
|
341 |
+
self.quantizer_type = quantizer
|
342 |
+
self.encoder = Encoder(
|
343 |
+
self.in_channels,
|
344 |
+
self.nf,
|
345 |
+
self.embed_dim,
|
346 |
+
self.ch_mult,
|
347 |
+
self.n_blocks,
|
348 |
+
self.resolution,
|
349 |
+
self.attn_resolutions
|
350 |
+
)
|
351 |
+
if self.quantizer_type == "nearest":
|
352 |
+
self.beta = beta #0.25
|
353 |
+
self.quantize = VectorQuantizer(self.codebook_size, self.embed_dim, self.beta)
|
354 |
+
elif self.quantizer_type == "gumbel":
|
355 |
+
self.gumbel_num_hiddens = emb_dim
|
356 |
+
self.straight_through = gumbel_straight_through
|
357 |
+
self.kl_weight = gumbel_kl_weight
|
358 |
+
self.quantize = GumbelQuantizer(
|
359 |
+
self.codebook_size,
|
360 |
+
self.embed_dim,
|
361 |
+
self.gumbel_num_hiddens,
|
362 |
+
self.straight_through,
|
363 |
+
self.kl_weight
|
364 |
+
)
|
365 |
+
self.generator = Generator(
|
366 |
+
self.nf,
|
367 |
+
self.embed_dim,
|
368 |
+
self.ch_mult,
|
369 |
+
self.n_blocks,
|
370 |
+
self.resolution,
|
371 |
+
self.attn_resolutions
|
372 |
+
)
|
373 |
+
|
374 |
+
if model_path is not None:
|
375 |
+
chkpt = torch.load(model_path, map_location='cpu')
|
376 |
+
if 'params_ema' in chkpt:
|
377 |
+
self.load_state_dict(torch.load(model_path, map_location='cpu')['params_ema'])
|
378 |
+
logger.info(f'vqgan is loaded from: {model_path} [params_ema]')
|
379 |
+
elif 'params' in chkpt:
|
380 |
+
self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
|
381 |
+
logger.info(f'vqgan is loaded from: {model_path} [params]')
|
382 |
+
else:
|
383 |
+
raise ValueError(f'Wrong params!')
|
384 |
+
|
385 |
+
|
386 |
+
def forward(self, x):
|
387 |
+
x = self.encoder(x)
|
388 |
+
quant, codebook_loss, quant_stats = self.quantize(x)
|
389 |
+
x = self.generator(quant)
|
390 |
+
return x, codebook_loss, quant_stats
|
391 |
+
|
392 |
+
|
393 |
+
|
394 |
+
# patch based discriminator
|
395 |
+
@ARCH_REGISTRY.register()
|
396 |
+
class VQGANDiscriminator(nn.Module):
|
397 |
+
def __init__(self, nc=3, ndf=64, n_layers=4, model_path=None):
|
398 |
+
super().__init__()
|
399 |
+
|
400 |
+
layers = [nn.Conv2d(nc, ndf, kernel_size=4, stride=2, padding=1), nn.LeakyReLU(0.2, True)]
|
401 |
+
ndf_mult = 1
|
402 |
+
ndf_mult_prev = 1
|
403 |
+
for n in range(1, n_layers): # gradually increase the number of filters
|
404 |
+
ndf_mult_prev = ndf_mult
|
405 |
+
ndf_mult = min(2 ** n, 8)
|
406 |
+
layers += [
|
407 |
+
nn.Conv2d(ndf * ndf_mult_prev, ndf * ndf_mult, kernel_size=4, stride=2, padding=1, bias=False),
|
408 |
+
nn.BatchNorm2d(ndf * ndf_mult),
|
409 |
+
nn.LeakyReLU(0.2, True)
|
410 |
+
]
|
411 |
+
|
412 |
+
ndf_mult_prev = ndf_mult
|
413 |
+
ndf_mult = min(2 ** n_layers, 8)
|
414 |
+
|
415 |
+
layers += [
|
416 |
+
nn.Conv2d(ndf * ndf_mult_prev, ndf * ndf_mult, kernel_size=4, stride=1, padding=1, bias=False),
|
417 |
+
nn.BatchNorm2d(ndf * ndf_mult),
|
418 |
+
nn.LeakyReLU(0.2, True)
|
419 |
+
]
|
420 |
+
|
421 |
+
layers += [
|
422 |
+
nn.Conv2d(ndf * ndf_mult, 1, kernel_size=4, stride=1, padding=1)] # output 1 channel prediction map
|
423 |
+
self.main = nn.Sequential(*layers)
|
424 |
+
|
425 |
+
if model_path is not None:
|
426 |
+
chkpt = torch.load(model_path, map_location='cpu')
|
427 |
+
if 'params_d' in chkpt:
|
428 |
+
self.load_state_dict(torch.load(model_path, map_location='cpu')['params_d'])
|
429 |
+
elif 'params' in chkpt:
|
430 |
+
self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
|
431 |
+
else:
|
432 |
+
raise ValueError(f'Wrong params!')
|
433 |
+
|
434 |
+
def forward(self, x):
|
435 |
+
return self.main(x)
|
CodeFormer/basicsr/data/__init__.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
import numpy as np
|
3 |
+
import random
|
4 |
+
import torch
|
5 |
+
import torch.utils.data
|
6 |
+
from copy import deepcopy
|
7 |
+
from functools import partial
|
8 |
+
from os import path as osp
|
9 |
+
|
10 |
+
from basicsr.data.prefetch_dataloader import PrefetchDataLoader
|
11 |
+
from basicsr.utils import get_root_logger, scandir
|
12 |
+
from basicsr.utils.dist_util import get_dist_info
|
13 |
+
from basicsr.utils.registry import DATASET_REGISTRY
|
14 |
+
|
15 |
+
__all__ = ['build_dataset', 'build_dataloader']
|
16 |
+
|
17 |
+
# automatically scan and import dataset modules for registry
|
18 |
+
# scan all the files under the data folder with '_dataset' in file names
|
19 |
+
data_folder = osp.dirname(osp.abspath(__file__))
|
20 |
+
dataset_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(data_folder) if v.endswith('_dataset.py')]
|
21 |
+
# import all the dataset modules
|
22 |
+
_dataset_modules = [importlib.import_module(f'basicsr.data.{file_name}') for file_name in dataset_filenames]
|
23 |
+
|
24 |
+
|
25 |
+
def build_dataset(dataset_opt):
|
26 |
+
"""Build dataset from options.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
dataset_opt (dict): Configuration for dataset. It must constain:
|
30 |
+
name (str): Dataset name.
|
31 |
+
type (str): Dataset type.
|
32 |
+
"""
|
33 |
+
dataset_opt = deepcopy(dataset_opt)
|
34 |
+
dataset = DATASET_REGISTRY.get(dataset_opt['type'])(dataset_opt)
|
35 |
+
logger = get_root_logger()
|
36 |
+
logger.info(f'Dataset [{dataset.__class__.__name__}] - {dataset_opt["name"]} ' 'is built.')
|
37 |
+
return dataset
|
38 |
+
|
39 |
+
|
40 |
+
def build_dataloader(dataset, dataset_opt, num_gpu=1, dist=False, sampler=None, seed=None):
|
41 |
+
"""Build dataloader.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
dataset (torch.utils.data.Dataset): Dataset.
|
45 |
+
dataset_opt (dict): Dataset options. It contains the following keys:
|
46 |
+
phase (str): 'train' or 'val'.
|
47 |
+
num_worker_per_gpu (int): Number of workers for each GPU.
|
48 |
+
batch_size_per_gpu (int): Training batch size for each GPU.
|
49 |
+
num_gpu (int): Number of GPUs. Used only in the train phase.
|
50 |
+
Default: 1.
|
51 |
+
dist (bool): Whether in distributed training. Used only in the train
|
52 |
+
phase. Default: False.
|
53 |
+
sampler (torch.utils.data.sampler): Data sampler. Default: None.
|
54 |
+
seed (int | None): Seed. Default: None
|
55 |
+
"""
|
56 |
+
phase = dataset_opt['phase']
|
57 |
+
rank, _ = get_dist_info()
|
58 |
+
if phase == 'train':
|
59 |
+
if dist: # distributed training
|
60 |
+
batch_size = dataset_opt['batch_size_per_gpu']
|
61 |
+
num_workers = dataset_opt['num_worker_per_gpu']
|
62 |
+
else: # non-distributed training
|
63 |
+
multiplier = 1 if num_gpu == 0 else num_gpu
|
64 |
+
batch_size = dataset_opt['batch_size_per_gpu'] * multiplier
|
65 |
+
num_workers = dataset_opt['num_worker_per_gpu'] * multiplier
|
66 |
+
dataloader_args = dict(
|
67 |
+
dataset=dataset,
|
68 |
+
batch_size=batch_size,
|
69 |
+
shuffle=False,
|
70 |
+
num_workers=num_workers,
|
71 |
+
sampler=sampler,
|
72 |
+
drop_last=True)
|
73 |
+
if sampler is None:
|
74 |
+
dataloader_args['shuffle'] = True
|
75 |
+
dataloader_args['worker_init_fn'] = partial(
|
76 |
+
worker_init_fn, num_workers=num_workers, rank=rank, seed=seed) if seed is not None else None
|
77 |
+
elif phase in ['val', 'test']: # validation
|
78 |
+
dataloader_args = dict(dataset=dataset, batch_size=1, shuffle=False, num_workers=0)
|
79 |
+
else:
|
80 |
+
raise ValueError(f'Wrong dataset phase: {phase}. ' "Supported ones are 'train', 'val' and 'test'.")
|
81 |
+
|
82 |
+
dataloader_args['pin_memory'] = dataset_opt.get('pin_memory', False)
|
83 |
+
|
84 |
+
prefetch_mode = dataset_opt.get('prefetch_mode')
|
85 |
+
if prefetch_mode == 'cpu': # CPUPrefetcher
|
86 |
+
num_prefetch_queue = dataset_opt.get('num_prefetch_queue', 1)
|
87 |
+
logger = get_root_logger()
|
88 |
+
logger.info(f'Use {prefetch_mode} prefetch dataloader: ' f'num_prefetch_queue = {num_prefetch_queue}')
|
89 |
+
return PrefetchDataLoader(num_prefetch_queue=num_prefetch_queue, **dataloader_args)
|
90 |
+
else:
|
91 |
+
# prefetch_mode=None: Normal dataloader
|
92 |
+
# prefetch_mode='cuda': dataloader for CUDAPrefetcher
|
93 |
+
return torch.utils.data.DataLoader(**dataloader_args)
|
94 |
+
|
95 |
+
|
96 |
+
def worker_init_fn(worker_id, num_workers, rank, seed):
|
97 |
+
# Set the worker seed to num_workers * rank + worker_id + seed
|
98 |
+
worker_seed = num_workers * rank + worker_id + seed
|
99 |
+
np.random.seed(worker_seed)
|
100 |
+
random.seed(worker_seed)
|
CodeFormer/basicsr/data/data_sampler.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch.utils.data.sampler import Sampler
|
4 |
+
|
5 |
+
|
6 |
+
class EnlargedSampler(Sampler):
|
7 |
+
"""Sampler that restricts data loading to a subset of the dataset.
|
8 |
+
|
9 |
+
Modified from torch.utils.data.distributed.DistributedSampler
|
10 |
+
Support enlarging the dataset for iteration-based training, for saving
|
11 |
+
time when restart the dataloader after each epoch
|
12 |
+
|
13 |
+
Args:
|
14 |
+
dataset (torch.utils.data.Dataset): Dataset used for sampling.
|
15 |
+
num_replicas (int | None): Number of processes participating in
|
16 |
+
the training. It is usually the world_size.
|
17 |
+
rank (int | None): Rank of the current process within num_replicas.
|
18 |
+
ratio (int): Enlarging ratio. Default: 1.
|
19 |
+
"""
|
20 |
+
|
21 |
+
def __init__(self, dataset, num_replicas, rank, ratio=1):
|
22 |
+
self.dataset = dataset
|
23 |
+
self.num_replicas = num_replicas
|
24 |
+
self.rank = rank
|
25 |
+
self.epoch = 0
|
26 |
+
self.num_samples = math.ceil(len(self.dataset) * ratio / self.num_replicas)
|
27 |
+
self.total_size = self.num_samples * self.num_replicas
|
28 |
+
|
29 |
+
def __iter__(self):
|
30 |
+
# deterministically shuffle based on epoch
|
31 |
+
g = torch.Generator()
|
32 |
+
g.manual_seed(self.epoch)
|
33 |
+
indices = torch.randperm(self.total_size, generator=g).tolist()
|
34 |
+
|
35 |
+
dataset_size = len(self.dataset)
|
36 |
+
indices = [v % dataset_size for v in indices]
|
37 |
+
|
38 |
+
# subsample
|
39 |
+
indices = indices[self.rank:self.total_size:self.num_replicas]
|
40 |
+
assert len(indices) == self.num_samples
|
41 |
+
|
42 |
+
return iter(indices)
|
43 |
+
|
44 |
+
def __len__(self):
|
45 |
+
return self.num_samples
|
46 |
+
|
47 |
+
def set_epoch(self, epoch):
|
48 |
+
self.epoch = epoch
|
CodeFormer/basicsr/data/data_util.py
ADDED
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from os import path as osp
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
from basicsr.data.transforms import mod_crop
|
8 |
+
from basicsr.utils import img2tensor, scandir
|
9 |
+
|
10 |
+
|
11 |
+
def read_img_seq(path, require_mod_crop=False, scale=1):
|
12 |
+
"""Read a sequence of images from a given folder path.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
path (list[str] | str): List of image paths or image folder path.
|
16 |
+
require_mod_crop (bool): Require mod crop for each image.
|
17 |
+
Default: False.
|
18 |
+
scale (int): Scale factor for mod_crop. Default: 1.
|
19 |
+
|
20 |
+
Returns:
|
21 |
+
Tensor: size (t, c, h, w), RGB, [0, 1].
|
22 |
+
"""
|
23 |
+
if isinstance(path, list):
|
24 |
+
img_paths = path
|
25 |
+
else:
|
26 |
+
img_paths = sorted(list(scandir(path, full_path=True)))
|
27 |
+
imgs = [cv2.imread(v).astype(np.float32) / 255. for v in img_paths]
|
28 |
+
if require_mod_crop:
|
29 |
+
imgs = [mod_crop(img, scale) for img in imgs]
|
30 |
+
imgs = img2tensor(imgs, bgr2rgb=True, float32=True)
|
31 |
+
imgs = torch.stack(imgs, dim=0)
|
32 |
+
return imgs
|
33 |
+
|
34 |
+
|
35 |
+
def generate_frame_indices(crt_idx, max_frame_num, num_frames, padding='reflection'):
|
36 |
+
"""Generate an index list for reading `num_frames` frames from a sequence
|
37 |
+
of images.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
crt_idx (int): Current center index.
|
41 |
+
max_frame_num (int): Max number of the sequence of images (from 1).
|
42 |
+
num_frames (int): Reading num_frames frames.
|
43 |
+
padding (str): Padding mode, one of
|
44 |
+
'replicate' | 'reflection' | 'reflection_circle' | 'circle'
|
45 |
+
Examples: current_idx = 0, num_frames = 5
|
46 |
+
The generated frame indices under different padding mode:
|
47 |
+
replicate: [0, 0, 0, 1, 2]
|
48 |
+
reflection: [2, 1, 0, 1, 2]
|
49 |
+
reflection_circle: [4, 3, 0, 1, 2]
|
50 |
+
circle: [3, 4, 0, 1, 2]
|
51 |
+
|
52 |
+
Returns:
|
53 |
+
list[int]: A list of indices.
|
54 |
+
"""
|
55 |
+
assert num_frames % 2 == 1, 'num_frames should be an odd number.'
|
56 |
+
assert padding in ('replicate', 'reflection', 'reflection_circle', 'circle'), f'Wrong padding mode: {padding}.'
|
57 |
+
|
58 |
+
max_frame_num = max_frame_num - 1 # start from 0
|
59 |
+
num_pad = num_frames // 2
|
60 |
+
|
61 |
+
indices = []
|
62 |
+
for i in range(crt_idx - num_pad, crt_idx + num_pad + 1):
|
63 |
+
if i < 0:
|
64 |
+
if padding == 'replicate':
|
65 |
+
pad_idx = 0
|
66 |
+
elif padding == 'reflection':
|
67 |
+
pad_idx = -i
|
68 |
+
elif padding == 'reflection_circle':
|
69 |
+
pad_idx = crt_idx + num_pad - i
|
70 |
+
else:
|
71 |
+
pad_idx = num_frames + i
|
72 |
+
elif i > max_frame_num:
|
73 |
+
if padding == 'replicate':
|
74 |
+
pad_idx = max_frame_num
|
75 |
+
elif padding == 'reflection':
|
76 |
+
pad_idx = max_frame_num * 2 - i
|
77 |
+
elif padding == 'reflection_circle':
|
78 |
+
pad_idx = (crt_idx - num_pad) - (i - max_frame_num)
|
79 |
+
else:
|
80 |
+
pad_idx = i - num_frames
|
81 |
+
else:
|
82 |
+
pad_idx = i
|
83 |
+
indices.append(pad_idx)
|
84 |
+
return indices
|
85 |
+
|
86 |
+
|
87 |
+
def paired_paths_from_lmdb(folders, keys):
|
88 |
+
"""Generate paired paths from lmdb files.
|
89 |
+
|
90 |
+
Contents of lmdb. Taking the `lq.lmdb` for example, the file structure is:
|
91 |
+
|
92 |
+
lq.lmdb
|
93 |
+
├── data.mdb
|
94 |
+
├── lock.mdb
|
95 |
+
├── meta_info.txt
|
96 |
+
|
97 |
+
The data.mdb and lock.mdb are standard lmdb files and you can refer to
|
98 |
+
https://lmdb.readthedocs.io/en/release/ for more details.
|
99 |
+
|
100 |
+
The meta_info.txt is a specified txt file to record the meta information
|
101 |
+
of our datasets. It will be automatically created when preparing
|
102 |
+
datasets by our provided dataset tools.
|
103 |
+
Each line in the txt file records
|
104 |
+
1)image name (with extension),
|
105 |
+
2)image shape,
|
106 |
+
3)compression level, separated by a white space.
|
107 |
+
Example: `baboon.png (120,125,3) 1`
|
108 |
+
|
109 |
+
We use the image name without extension as the lmdb key.
|
110 |
+
Note that we use the same key for the corresponding lq and gt images.
|
111 |
+
|
112 |
+
Args:
|
113 |
+
folders (list[str]): A list of folder path. The order of list should
|
114 |
+
be [input_folder, gt_folder].
|
115 |
+
keys (list[str]): A list of keys identifying folders. The order should
|
116 |
+
be in consistent with folders, e.g., ['lq', 'gt'].
|
117 |
+
Note that this key is different from lmdb keys.
|
118 |
+
|
119 |
+
Returns:
|
120 |
+
list[str]: Returned path list.
|
121 |
+
"""
|
122 |
+
assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. '
|
123 |
+
f'But got {len(folders)}')
|
124 |
+
assert len(keys) == 2, ('The len of keys should be 2 with [input_key, gt_key]. ' f'But got {len(keys)}')
|
125 |
+
input_folder, gt_folder = folders
|
126 |
+
input_key, gt_key = keys
|
127 |
+
|
128 |
+
if not (input_folder.endswith('.lmdb') and gt_folder.endswith('.lmdb')):
|
129 |
+
raise ValueError(f'{input_key} folder and {gt_key} folder should both in lmdb '
|
130 |
+
f'formats. But received {input_key}: {input_folder}; '
|
131 |
+
f'{gt_key}: {gt_folder}')
|
132 |
+
# ensure that the two meta_info files are the same
|
133 |
+
with open(osp.join(input_folder, 'meta_info.txt')) as fin:
|
134 |
+
input_lmdb_keys = [line.split('.')[0] for line in fin]
|
135 |
+
with open(osp.join(gt_folder, 'meta_info.txt')) as fin:
|
136 |
+
gt_lmdb_keys = [line.split('.')[0] for line in fin]
|
137 |
+
if set(input_lmdb_keys) != set(gt_lmdb_keys):
|
138 |
+
raise ValueError(f'Keys in {input_key}_folder and {gt_key}_folder are different.')
|
139 |
+
else:
|
140 |
+
paths = []
|
141 |
+
for lmdb_key in sorted(input_lmdb_keys):
|
142 |
+
paths.append(dict([(f'{input_key}_path', lmdb_key), (f'{gt_key}_path', lmdb_key)]))
|
143 |
+
return paths
|
144 |
+
|
145 |
+
|
146 |
+
def paired_paths_from_meta_info_file(folders, keys, meta_info_file, filename_tmpl):
|
147 |
+
"""Generate paired paths from an meta information file.
|
148 |
+
|
149 |
+
Each line in the meta information file contains the image names and
|
150 |
+
image shape (usually for gt), separated by a white space.
|
151 |
+
|
152 |
+
Example of an meta information file:
|
153 |
+
```
|
154 |
+
0001_s001.png (480,480,3)
|
155 |
+
0001_s002.png (480,480,3)
|
156 |
+
```
|
157 |
+
|
158 |
+
Args:
|
159 |
+
folders (list[str]): A list of folder path. The order of list should
|
160 |
+
be [input_folder, gt_folder].
|
161 |
+
keys (list[str]): A list of keys identifying folders. The order should
|
162 |
+
be in consistent with folders, e.g., ['lq', 'gt'].
|
163 |
+
meta_info_file (str): Path to the meta information file.
|
164 |
+
filename_tmpl (str): Template for each filename. Note that the
|
165 |
+
template excludes the file extension. Usually the filename_tmpl is
|
166 |
+
for files in the input folder.
|
167 |
+
|
168 |
+
Returns:
|
169 |
+
list[str]: Returned path list.
|
170 |
+
"""
|
171 |
+
assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. '
|
172 |
+
f'But got {len(folders)}')
|
173 |
+
assert len(keys) == 2, ('The len of keys should be 2 with [input_key, gt_key]. ' f'But got {len(keys)}')
|
174 |
+
input_folder, gt_folder = folders
|
175 |
+
input_key, gt_key = keys
|
176 |
+
|
177 |
+
with open(meta_info_file, 'r') as fin:
|
178 |
+
gt_names = [line.split(' ')[0] for line in fin]
|
179 |
+
|
180 |
+
paths = []
|
181 |
+
for gt_name in gt_names:
|
182 |
+
basename, ext = osp.splitext(osp.basename(gt_name))
|
183 |
+
input_name = f'{filename_tmpl.format(basename)}{ext}'
|
184 |
+
input_path = osp.join(input_folder, input_name)
|
185 |
+
gt_path = osp.join(gt_folder, gt_name)
|
186 |
+
paths.append(dict([(f'{input_key}_path', input_path), (f'{gt_key}_path', gt_path)]))
|
187 |
+
return paths
|
188 |
+
|
189 |
+
|
190 |
+
def paired_paths_from_folder(folders, keys, filename_tmpl):
|
191 |
+
"""Generate paired paths from folders.
|
192 |
+
|
193 |
+
Args:
|
194 |
+
folders (list[str]): A list of folder path. The order of list should
|
195 |
+
be [input_folder, gt_folder].
|
196 |
+
keys (list[str]): A list of keys identifying folders. The order should
|
197 |
+
be in consistent with folders, e.g., ['lq', 'gt'].
|
198 |
+
filename_tmpl (str): Template for each filename. Note that the
|
199 |
+
template excludes the file extension. Usually the filename_tmpl is
|
200 |
+
for files in the input folder.
|
201 |
+
|
202 |
+
Returns:
|
203 |
+
list[str]: Returned path list.
|
204 |
+
"""
|
205 |
+
assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. '
|
206 |
+
f'But got {len(folders)}')
|
207 |
+
assert len(keys) == 2, ('The len of keys should be 2 with [input_key, gt_key]. ' f'But got {len(keys)}')
|
208 |
+
input_folder, gt_folder = folders
|
209 |
+
input_key, gt_key = keys
|
210 |
+
|
211 |
+
input_paths = list(scandir(input_folder))
|
212 |
+
gt_paths = list(scandir(gt_folder))
|
213 |
+
assert len(input_paths) == len(gt_paths), (f'{input_key} and {gt_key} datasets have different number of images: '
|
214 |
+
f'{len(input_paths)}, {len(gt_paths)}.')
|
215 |
+
paths = []
|
216 |
+
for gt_path in gt_paths:
|
217 |
+
basename, ext = osp.splitext(osp.basename(gt_path))
|
218 |
+
input_name = f'{filename_tmpl.format(basename)}{ext}'
|
219 |
+
input_path = osp.join(input_folder, input_name)
|
220 |
+
assert input_name in input_paths, (f'{input_name} is not in ' f'{input_key}_paths.')
|
221 |
+
gt_path = osp.join(gt_folder, gt_path)
|
222 |
+
paths.append(dict([(f'{input_key}_path', input_path), (f'{gt_key}_path', gt_path)]))
|
223 |
+
return paths
|
224 |
+
|
225 |
+
|
226 |
+
def paths_from_folder(folder):
|
227 |
+
"""Generate paths from folder.
|
228 |
+
|
229 |
+
Args:
|
230 |
+
folder (str): Folder path.
|
231 |
+
|
232 |
+
Returns:
|
233 |
+
list[str]: Returned path list.
|
234 |
+
"""
|
235 |
+
|
236 |
+
paths = list(scandir(folder))
|
237 |
+
paths = [osp.join(folder, path) for path in paths]
|
238 |
+
return paths
|
239 |
+
|
240 |
+
|
241 |
+
def paths_from_lmdb(folder):
|
242 |
+
"""Generate paths from lmdb.
|
243 |
+
|
244 |
+
Args:
|
245 |
+
folder (str): Folder path.
|
246 |
+
|
247 |
+
Returns:
|
248 |
+
list[str]: Returned path list.
|
249 |
+
"""
|
250 |
+
if not folder.endswith('.lmdb'):
|
251 |
+
raise ValueError(f'Folder {folder}folder should in lmdb format.')
|
252 |
+
with open(osp.join(folder, 'meta_info.txt')) as fin:
|
253 |
+
paths = [line.split('.')[0] for line in fin]
|
254 |
+
return paths
|
255 |
+
|
256 |
+
|
257 |
+
def generate_gaussian_kernel(kernel_size=13, sigma=1.6):
|
258 |
+
"""Generate Gaussian kernel used in `duf_downsample`.
|
259 |
+
|
260 |
+
Args:
|
261 |
+
kernel_size (int): Kernel size. Default: 13.
|
262 |
+
sigma (float): Sigma of the Gaussian kernel. Default: 1.6.
|
263 |
+
|
264 |
+
Returns:
|
265 |
+
np.array: The Gaussian kernel.
|
266 |
+
"""
|
267 |
+
from scipy.ndimage import filters as filters
|
268 |
+
kernel = np.zeros((kernel_size, kernel_size))
|
269 |
+
# set element at the middle to one, a dirac delta
|
270 |
+
kernel[kernel_size // 2, kernel_size // 2] = 1
|
271 |
+
# gaussian-smooth the dirac, resulting in a gaussian filter
|
272 |
+
return filters.gaussian_filter(kernel, sigma)
|
273 |
+
|
274 |
+
|
275 |
+
def duf_downsample(x, kernel_size=13, scale=4):
|
276 |
+
"""Downsamping with Gaussian kernel used in the DUF official code.
|
277 |
+
|
278 |
+
Args:
|
279 |
+
x (Tensor): Frames to be downsampled, with shape (b, t, c, h, w).
|
280 |
+
kernel_size (int): Kernel size. Default: 13.
|
281 |
+
scale (int): Downsampling factor. Supported scale: (2, 3, 4).
|
282 |
+
Default: 4.
|
283 |
+
|
284 |
+
Returns:
|
285 |
+
Tensor: DUF downsampled frames.
|
286 |
+
"""
|
287 |
+
assert scale in (2, 3, 4), f'Only support scale (2, 3, 4), but got {scale}.'
|
288 |
+
|
289 |
+
squeeze_flag = False
|
290 |
+
if x.ndim == 4:
|
291 |
+
squeeze_flag = True
|
292 |
+
x = x.unsqueeze(0)
|
293 |
+
b, t, c, h, w = x.size()
|
294 |
+
x = x.view(-1, 1, h, w)
|
295 |
+
pad_w, pad_h = kernel_size // 2 + scale * 2, kernel_size // 2 + scale * 2
|
296 |
+
x = F.pad(x, (pad_w, pad_w, pad_h, pad_h), 'reflect')
|
297 |
+
|
298 |
+
gaussian_filter = generate_gaussian_kernel(kernel_size, 0.4 * scale)
|
299 |
+
gaussian_filter = torch.from_numpy(gaussian_filter).type_as(x).unsqueeze(0).unsqueeze(0)
|
300 |
+
x = F.conv2d(x, gaussian_filter, stride=scale)
|
301 |
+
x = x[:, :, 2:-2, 2:-2]
|
302 |
+
x = x.view(b, t, c, x.size(2), x.size(3))
|
303 |
+
if squeeze_flag:
|
304 |
+
x = x.squeeze(0)
|
305 |
+
return x
|
CodeFormer/basicsr/data/prefetch_dataloader.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import queue as Queue
|
2 |
+
import threading
|
3 |
+
import torch
|
4 |
+
from torch.utils.data import DataLoader
|
5 |
+
|
6 |
+
|
7 |
+
class PrefetchGenerator(threading.Thread):
|
8 |
+
"""A general prefetch generator.
|
9 |
+
|
10 |
+
Ref:
|
11 |
+
https://stackoverflow.com/questions/7323664/python-generator-pre-fetch
|
12 |
+
|
13 |
+
Args:
|
14 |
+
generator: Python generator.
|
15 |
+
num_prefetch_queue (int): Number of prefetch queue.
|
16 |
+
"""
|
17 |
+
|
18 |
+
def __init__(self, generator, num_prefetch_queue):
|
19 |
+
threading.Thread.__init__(self)
|
20 |
+
self.queue = Queue.Queue(num_prefetch_queue)
|
21 |
+
self.generator = generator
|
22 |
+
self.daemon = True
|
23 |
+
self.start()
|
24 |
+
|
25 |
+
def run(self):
|
26 |
+
for item in self.generator:
|
27 |
+
self.queue.put(item)
|
28 |
+
self.queue.put(None)
|
29 |
+
|
30 |
+
def __next__(self):
|
31 |
+
next_item = self.queue.get()
|
32 |
+
if next_item is None:
|
33 |
+
raise StopIteration
|
34 |
+
return next_item
|
35 |
+
|
36 |
+
def __iter__(self):
|
37 |
+
return self
|
38 |
+
|
39 |
+
|
40 |
+
class PrefetchDataLoader(DataLoader):
|
41 |
+
"""Prefetch version of dataloader.
|
42 |
+
|
43 |
+
Ref:
|
44 |
+
https://github.com/IgorSusmelj/pytorch-styleguide/issues/5#
|
45 |
+
|
46 |
+
TODO:
|
47 |
+
Need to test on single gpu and ddp (multi-gpu). There is a known issue in
|
48 |
+
ddp.
|
49 |
+
|
50 |
+
Args:
|
51 |
+
num_prefetch_queue (int): Number of prefetch queue.
|
52 |
+
kwargs (dict): Other arguments for dataloader.
|
53 |
+
"""
|
54 |
+
|
55 |
+
def __init__(self, num_prefetch_queue, **kwargs):
|
56 |
+
self.num_prefetch_queue = num_prefetch_queue
|
57 |
+
super(PrefetchDataLoader, self).__init__(**kwargs)
|
58 |
+
|
59 |
+
def __iter__(self):
|
60 |
+
return PrefetchGenerator(super().__iter__(), self.num_prefetch_queue)
|
61 |
+
|
62 |
+
|
63 |
+
class CPUPrefetcher():
|
64 |
+
"""CPU prefetcher.
|
65 |
+
|
66 |
+
Args:
|
67 |
+
loader: Dataloader.
|
68 |
+
"""
|
69 |
+
|
70 |
+
def __init__(self, loader):
|
71 |
+
self.ori_loader = loader
|
72 |
+
self.loader = iter(loader)
|
73 |
+
|
74 |
+
def next(self):
|
75 |
+
try:
|
76 |
+
return next(self.loader)
|
77 |
+
except StopIteration:
|
78 |
+
return None
|
79 |
+
|
80 |
+
def reset(self):
|
81 |
+
self.loader = iter(self.ori_loader)
|
82 |
+
|
83 |
+
|
84 |
+
class CUDAPrefetcher():
|
85 |
+
"""CUDA prefetcher.
|
86 |
+
|
87 |
+
Ref:
|
88 |
+
https://github.com/NVIDIA/apex/issues/304#
|
89 |
+
|
90 |
+
It may consums more GPU memory.
|
91 |
+
|
92 |
+
Args:
|
93 |
+
loader: Dataloader.
|
94 |
+
opt (dict): Options.
|
95 |
+
"""
|
96 |
+
|
97 |
+
def __init__(self, loader, opt):
|
98 |
+
self.ori_loader = loader
|
99 |
+
self.loader = iter(loader)
|
100 |
+
self.opt = opt
|
101 |
+
self.stream = torch.cuda.Stream()
|
102 |
+
self.device = torch.device('cuda' if opt['num_gpu'] != 0 else 'cpu')
|
103 |
+
self.preload()
|
104 |
+
|
105 |
+
def preload(self):
|
106 |
+
try:
|
107 |
+
self.batch = next(self.loader) # self.batch is a dict
|
108 |
+
except StopIteration:
|
109 |
+
self.batch = None
|
110 |
+
return None
|
111 |
+
# put tensors to gpu
|
112 |
+
with torch.cuda.stream(self.stream):
|
113 |
+
for k, v in self.batch.items():
|
114 |
+
if torch.is_tensor(v):
|
115 |
+
self.batch[k] = self.batch[k].to(device=self.device, non_blocking=True)
|
116 |
+
|
117 |
+
def next(self):
|
118 |
+
torch.cuda.current_stream().wait_stream(self.stream)
|
119 |
+
batch = self.batch
|
120 |
+
self.preload()
|
121 |
+
return batch
|
122 |
+
|
123 |
+
def reset(self):
|
124 |
+
self.loader = iter(self.ori_loader)
|
125 |
+
self.preload()
|
CodeFormer/basicsr/data/transforms.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import random
|
3 |
+
|
4 |
+
|
5 |
+
def mod_crop(img, scale):
|
6 |
+
"""Mod crop images, used during testing.
|
7 |
+
|
8 |
+
Args:
|
9 |
+
img (ndarray): Input image.
|
10 |
+
scale (int): Scale factor.
|
11 |
+
|
12 |
+
Returns:
|
13 |
+
ndarray: Result image.
|
14 |
+
"""
|
15 |
+
img = img.copy()
|
16 |
+
if img.ndim in (2, 3):
|
17 |
+
h, w = img.shape[0], img.shape[1]
|
18 |
+
h_remainder, w_remainder = h % scale, w % scale
|
19 |
+
img = img[:h - h_remainder, :w - w_remainder, ...]
|
20 |
+
else:
|
21 |
+
raise ValueError(f'Wrong img ndim: {img.ndim}.')
|
22 |
+
return img
|
23 |
+
|
24 |
+
|
25 |
+
def paired_random_crop(img_gts, img_lqs, gt_patch_size, scale, gt_path):
|
26 |
+
"""Paired random crop.
|
27 |
+
|
28 |
+
It crops lists of lq and gt images with corresponding locations.
|
29 |
+
|
30 |
+
Args:
|
31 |
+
img_gts (list[ndarray] | ndarray): GT images. Note that all images
|
32 |
+
should have the same shape. If the input is an ndarray, it will
|
33 |
+
be transformed to a list containing itself.
|
34 |
+
img_lqs (list[ndarray] | ndarray): LQ images. Note that all images
|
35 |
+
should have the same shape. If the input is an ndarray, it will
|
36 |
+
be transformed to a list containing itself.
|
37 |
+
gt_patch_size (int): GT patch size.
|
38 |
+
scale (int): Scale factor.
|
39 |
+
gt_path (str): Path to ground-truth.
|
40 |
+
|
41 |
+
Returns:
|
42 |
+
list[ndarray] | ndarray: GT images and LQ images. If returned results
|
43 |
+
only have one element, just return ndarray.
|
44 |
+
"""
|
45 |
+
|
46 |
+
if not isinstance(img_gts, list):
|
47 |
+
img_gts = [img_gts]
|
48 |
+
if not isinstance(img_lqs, list):
|
49 |
+
img_lqs = [img_lqs]
|
50 |
+
|
51 |
+
h_lq, w_lq, _ = img_lqs[0].shape
|
52 |
+
h_gt, w_gt, _ = img_gts[0].shape
|
53 |
+
lq_patch_size = gt_patch_size // scale
|
54 |
+
|
55 |
+
if h_gt != h_lq * scale or w_gt != w_lq * scale:
|
56 |
+
raise ValueError(f'Scale mismatches. GT ({h_gt}, {w_gt}) is not {scale}x ',
|
57 |
+
f'multiplication of LQ ({h_lq}, {w_lq}).')
|
58 |
+
if h_lq < lq_patch_size or w_lq < lq_patch_size:
|
59 |
+
raise ValueError(f'LQ ({h_lq}, {w_lq}) is smaller than patch size '
|
60 |
+
f'({lq_patch_size}, {lq_patch_size}). '
|
61 |
+
f'Please remove {gt_path}.')
|
62 |
+
|
63 |
+
# randomly choose top and left coordinates for lq patch
|
64 |
+
top = random.randint(0, h_lq - lq_patch_size)
|
65 |
+
left = random.randint(0, w_lq - lq_patch_size)
|
66 |
+
|
67 |
+
# crop lq patch
|
68 |
+
img_lqs = [v[top:top + lq_patch_size, left:left + lq_patch_size, ...] for v in img_lqs]
|
69 |
+
|
70 |
+
# crop corresponding gt patch
|
71 |
+
top_gt, left_gt = int(top * scale), int(left * scale)
|
72 |
+
img_gts = [v[top_gt:top_gt + gt_patch_size, left_gt:left_gt + gt_patch_size, ...] for v in img_gts]
|
73 |
+
if len(img_gts) == 1:
|
74 |
+
img_gts = img_gts[0]
|
75 |
+
if len(img_lqs) == 1:
|
76 |
+
img_lqs = img_lqs[0]
|
77 |
+
return img_gts, img_lqs
|
78 |
+
|
79 |
+
|
80 |
+
def augment(imgs, hflip=True, rotation=True, flows=None, return_status=False):
|
81 |
+
"""Augment: horizontal flips OR rotate (0, 90, 180, 270 degrees).
|
82 |
+
|
83 |
+
We use vertical flip and transpose for rotation implementation.
|
84 |
+
All the images in the list use the same augmentation.
|
85 |
+
|
86 |
+
Args:
|
87 |
+
imgs (list[ndarray] | ndarray): Images to be augmented. If the input
|
88 |
+
is an ndarray, it will be transformed to a list.
|
89 |
+
hflip (bool): Horizontal flip. Default: True.
|
90 |
+
rotation (bool): Ratotation. Default: True.
|
91 |
+
flows (list[ndarray]: Flows to be augmented. If the input is an
|
92 |
+
ndarray, it will be transformed to a list.
|
93 |
+
Dimension is (h, w, 2). Default: None.
|
94 |
+
return_status (bool): Return the status of flip and rotation.
|
95 |
+
Default: False.
|
96 |
+
|
97 |
+
Returns:
|
98 |
+
list[ndarray] | ndarray: Augmented images and flows. If returned
|
99 |
+
results only have one element, just return ndarray.
|
100 |
+
|
101 |
+
"""
|
102 |
+
hflip = hflip and random.random() < 0.5
|
103 |
+
vflip = rotation and random.random() < 0.5
|
104 |
+
rot90 = rotation and random.random() < 0.5
|
105 |
+
|
106 |
+
def _augment(img):
|
107 |
+
if hflip: # horizontal
|
108 |
+
cv2.flip(img, 1, img)
|
109 |
+
if vflip: # vertical
|
110 |
+
cv2.flip(img, 0, img)
|
111 |
+
if rot90:
|
112 |
+
img = img.transpose(1, 0, 2)
|
113 |
+
return img
|
114 |
+
|
115 |
+
def _augment_flow(flow):
|
116 |
+
if hflip: # horizontal
|
117 |
+
cv2.flip(flow, 1, flow)
|
118 |
+
flow[:, :, 0] *= -1
|
119 |
+
if vflip: # vertical
|
120 |
+
cv2.flip(flow, 0, flow)
|
121 |
+
flow[:, :, 1] *= -1
|
122 |
+
if rot90:
|
123 |
+
flow = flow.transpose(1, 0, 2)
|
124 |
+
flow = flow[:, :, [1, 0]]
|
125 |
+
return flow
|
126 |
+
|
127 |
+
if not isinstance(imgs, list):
|
128 |
+
imgs = [imgs]
|
129 |
+
imgs = [_augment(img) for img in imgs]
|
130 |
+
if len(imgs) == 1:
|
131 |
+
imgs = imgs[0]
|
132 |
+
|
133 |
+
if flows is not None:
|
134 |
+
if not isinstance(flows, list):
|
135 |
+
flows = [flows]
|
136 |
+
flows = [_augment_flow(flow) for flow in flows]
|
137 |
+
if len(flows) == 1:
|
138 |
+
flows = flows[0]
|
139 |
+
return imgs, flows
|
140 |
+
else:
|
141 |
+
if return_status:
|
142 |
+
return imgs, (hflip, vflip, rot90)
|
143 |
+
else:
|
144 |
+
return imgs
|
145 |
+
|
146 |
+
|
147 |
+
def img_rotate(img, angle, center=None, scale=1.0):
|
148 |
+
"""Rotate image.
|
149 |
+
|
150 |
+
Args:
|
151 |
+
img (ndarray): Image to be rotated.
|
152 |
+
angle (float): Rotation angle in degrees. Positive values mean
|
153 |
+
counter-clockwise rotation.
|
154 |
+
center (tuple[int]): Rotation center. If the center is None,
|
155 |
+
initialize it as the center of the image. Default: None.
|
156 |
+
scale (float): Isotropic scale factor. Default: 1.0.
|
157 |
+
"""
|
158 |
+
(h, w) = img.shape[:2]
|
159 |
+
|
160 |
+
if center is None:
|
161 |
+
center = (w // 2, h // 2)
|
162 |
+
|
163 |
+
matrix = cv2.getRotationMatrix2D(center, angle, scale)
|
164 |
+
rotated_img = cv2.warpAffine(img, matrix, (w, h))
|
165 |
+
return rotated_img
|
CodeFormer/basicsr/losses/__init__.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from copy import deepcopy
|
2 |
+
|
3 |
+
from basicsr.utils import get_root_logger
|
4 |
+
from basicsr.utils.registry import LOSS_REGISTRY
|
5 |
+
from .losses import (CharbonnierLoss, GANLoss, L1Loss, MSELoss, PerceptualLoss, WeightedTVLoss, g_path_regularize,
|
6 |
+
gradient_penalty_loss, r1_penalty)
|
7 |
+
|
8 |
+
__all__ = [
|
9 |
+
'L1Loss', 'MSELoss', 'CharbonnierLoss', 'WeightedTVLoss', 'PerceptualLoss', 'GANLoss', 'gradient_penalty_loss',
|
10 |
+
'r1_penalty', 'g_path_regularize'
|
11 |
+
]
|
12 |
+
|
13 |
+
|
14 |
+
def build_loss(opt):
|
15 |
+
"""Build loss from options.
|
16 |
+
|
17 |
+
Args:
|
18 |
+
opt (dict): Configuration. It must constain:
|
19 |
+
type (str): Model type.
|
20 |
+
"""
|
21 |
+
opt = deepcopy(opt)
|
22 |
+
loss_type = opt.pop('type')
|
23 |
+
loss = LOSS_REGISTRY.get(loss_type)(**opt)
|
24 |
+
logger = get_root_logger()
|
25 |
+
logger.info(f'Loss [{loss.__class__.__name__}] is created.')
|
26 |
+
return loss
|
CodeFormer/basicsr/losses/loss_util.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
from torch.nn import functional as F
|
3 |
+
|
4 |
+
|
5 |
+
def reduce_loss(loss, reduction):
|
6 |
+
"""Reduce loss as specified.
|
7 |
+
|
8 |
+
Args:
|
9 |
+
loss (Tensor): Elementwise loss tensor.
|
10 |
+
reduction (str): Options are 'none', 'mean' and 'sum'.
|
11 |
+
|
12 |
+
Returns:
|
13 |
+
Tensor: Reduced loss tensor.
|
14 |
+
"""
|
15 |
+
reduction_enum = F._Reduction.get_enum(reduction)
|
16 |
+
# none: 0, elementwise_mean:1, sum: 2
|
17 |
+
if reduction_enum == 0:
|
18 |
+
return loss
|
19 |
+
elif reduction_enum == 1:
|
20 |
+
return loss.mean()
|
21 |
+
else:
|
22 |
+
return loss.sum()
|
23 |
+
|
24 |
+
|
25 |
+
def weight_reduce_loss(loss, weight=None, reduction='mean'):
|
26 |
+
"""Apply element-wise weight and reduce loss.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
loss (Tensor): Element-wise loss.
|
30 |
+
weight (Tensor): Element-wise weights. Default: None.
|
31 |
+
reduction (str): Same as built-in losses of PyTorch. Options are
|
32 |
+
'none', 'mean' and 'sum'. Default: 'mean'.
|
33 |
+
|
34 |
+
Returns:
|
35 |
+
Tensor: Loss values.
|
36 |
+
"""
|
37 |
+
# if weight is specified, apply element-wise weight
|
38 |
+
if weight is not None:
|
39 |
+
assert weight.dim() == loss.dim()
|
40 |
+
assert weight.size(1) == 1 or weight.size(1) == loss.size(1)
|
41 |
+
loss = loss * weight
|
42 |
+
|
43 |
+
# if weight is not specified or reduction is sum, just reduce the loss
|
44 |
+
if weight is None or reduction == 'sum':
|
45 |
+
loss = reduce_loss(loss, reduction)
|
46 |
+
# if reduction is mean, then compute mean over weight region
|
47 |
+
elif reduction == 'mean':
|
48 |
+
if weight.size(1) > 1:
|
49 |
+
weight = weight.sum()
|
50 |
+
else:
|
51 |
+
weight = weight.sum() * loss.size(1)
|
52 |
+
loss = loss.sum() / weight
|
53 |
+
|
54 |
+
return loss
|
55 |
+
|
56 |
+
|
57 |
+
def weighted_loss(loss_func):
|
58 |
+
"""Create a weighted version of a given loss function.
|
59 |
+
|
60 |
+
To use this decorator, the loss function must have the signature like
|
61 |
+
`loss_func(pred, target, **kwargs)`. The function only needs to compute
|
62 |
+
element-wise loss without any reduction. This decorator will add weight
|
63 |
+
and reduction arguments to the function. The decorated function will have
|
64 |
+
the signature like `loss_func(pred, target, weight=None, reduction='mean',
|
65 |
+
**kwargs)`.
|
66 |
+
|
67 |
+
:Example:
|
68 |
+
|
69 |
+
>>> import torch
|
70 |
+
>>> @weighted_loss
|
71 |
+
>>> def l1_loss(pred, target):
|
72 |
+
>>> return (pred - target).abs()
|
73 |
+
|
74 |
+
>>> pred = torch.Tensor([0, 2, 3])
|
75 |
+
>>> target = torch.Tensor([1, 1, 1])
|
76 |
+
>>> weight = torch.Tensor([1, 0, 1])
|
77 |
+
|
78 |
+
>>> l1_loss(pred, target)
|
79 |
+
tensor(1.3333)
|
80 |
+
>>> l1_loss(pred, target, weight)
|
81 |
+
tensor(1.5000)
|
82 |
+
>>> l1_loss(pred, target, reduction='none')
|
83 |
+
tensor([1., 1., 2.])
|
84 |
+
>>> l1_loss(pred, target, weight, reduction='sum')
|
85 |
+
tensor(3.)
|
86 |
+
"""
|
87 |
+
|
88 |
+
@functools.wraps(loss_func)
|
89 |
+
def wrapper(pred, target, weight=None, reduction='mean', **kwargs):
|
90 |
+
# get element-wise loss
|
91 |
+
loss = loss_func(pred, target, **kwargs)
|
92 |
+
loss = weight_reduce_loss(loss, weight, reduction)
|
93 |
+
return loss
|
94 |
+
|
95 |
+
return wrapper
|
CodeFormer/basicsr/losses/losses.py
ADDED
@@ -0,0 +1,455 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import lpips
|
3 |
+
import torch
|
4 |
+
from torch import autograd as autograd
|
5 |
+
from torch import nn as nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
from basicsr.archs.vgg_arch import VGGFeatureExtractor
|
9 |
+
from basicsr.utils.registry import LOSS_REGISTRY
|
10 |
+
from .loss_util import weighted_loss
|
11 |
+
|
12 |
+
_reduction_modes = ['none', 'mean', 'sum']
|
13 |
+
|
14 |
+
|
15 |
+
@weighted_loss
|
16 |
+
def l1_loss(pred, target):
|
17 |
+
return F.l1_loss(pred, target, reduction='none')
|
18 |
+
|
19 |
+
|
20 |
+
@weighted_loss
|
21 |
+
def mse_loss(pred, target):
|
22 |
+
return F.mse_loss(pred, target, reduction='none')
|
23 |
+
|
24 |
+
|
25 |
+
@weighted_loss
|
26 |
+
def charbonnier_loss(pred, target, eps=1e-12):
|
27 |
+
return torch.sqrt((pred - target)**2 + eps)
|
28 |
+
|
29 |
+
|
30 |
+
@LOSS_REGISTRY.register()
|
31 |
+
class L1Loss(nn.Module):
|
32 |
+
"""L1 (mean absolute error, MAE) loss.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
loss_weight (float): Loss weight for L1 loss. Default: 1.0.
|
36 |
+
reduction (str): Specifies the reduction to apply to the output.
|
37 |
+
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
|
38 |
+
"""
|
39 |
+
|
40 |
+
def __init__(self, loss_weight=1.0, reduction='mean'):
|
41 |
+
super(L1Loss, self).__init__()
|
42 |
+
if reduction not in ['none', 'mean', 'sum']:
|
43 |
+
raise ValueError(f'Unsupported reduction mode: {reduction}. ' f'Supported ones are: {_reduction_modes}')
|
44 |
+
|
45 |
+
self.loss_weight = loss_weight
|
46 |
+
self.reduction = reduction
|
47 |
+
|
48 |
+
def forward(self, pred, target, weight=None, **kwargs):
|
49 |
+
"""
|
50 |
+
Args:
|
51 |
+
pred (Tensor): of shape (N, C, H, W). Predicted tensor.
|
52 |
+
target (Tensor): of shape (N, C, H, W). Ground truth tensor.
|
53 |
+
weight (Tensor, optional): of shape (N, C, H, W). Element-wise
|
54 |
+
weights. Default: None.
|
55 |
+
"""
|
56 |
+
return self.loss_weight * l1_loss(pred, target, weight, reduction=self.reduction)
|
57 |
+
|
58 |
+
|
59 |
+
@LOSS_REGISTRY.register()
|
60 |
+
class MSELoss(nn.Module):
|
61 |
+
"""MSE (L2) loss.
|
62 |
+
|
63 |
+
Args:
|
64 |
+
loss_weight (float): Loss weight for MSE loss. Default: 1.0.
|
65 |
+
reduction (str): Specifies the reduction to apply to the output.
|
66 |
+
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
|
67 |
+
"""
|
68 |
+
|
69 |
+
def __init__(self, loss_weight=1.0, reduction='mean'):
|
70 |
+
super(MSELoss, self).__init__()
|
71 |
+
if reduction not in ['none', 'mean', 'sum']:
|
72 |
+
raise ValueError(f'Unsupported reduction mode: {reduction}. ' f'Supported ones are: {_reduction_modes}')
|
73 |
+
|
74 |
+
self.loss_weight = loss_weight
|
75 |
+
self.reduction = reduction
|
76 |
+
|
77 |
+
def forward(self, pred, target, weight=None, **kwargs):
|
78 |
+
"""
|
79 |
+
Args:
|
80 |
+
pred (Tensor): of shape (N, C, H, W). Predicted tensor.
|
81 |
+
target (Tensor): of shape (N, C, H, W). Ground truth tensor.
|
82 |
+
weight (Tensor, optional): of shape (N, C, H, W). Element-wise
|
83 |
+
weights. Default: None.
|
84 |
+
"""
|
85 |
+
return self.loss_weight * mse_loss(pred, target, weight, reduction=self.reduction)
|
86 |
+
|
87 |
+
|
88 |
+
@LOSS_REGISTRY.register()
|
89 |
+
class CharbonnierLoss(nn.Module):
|
90 |
+
"""Charbonnier loss (one variant of Robust L1Loss, a differentiable
|
91 |
+
variant of L1Loss).
|
92 |
+
|
93 |
+
Described in "Deep Laplacian Pyramid Networks for Fast and Accurate
|
94 |
+
Super-Resolution".
|
95 |
+
|
96 |
+
Args:
|
97 |
+
loss_weight (float): Loss weight for L1 loss. Default: 1.0.
|
98 |
+
reduction (str): Specifies the reduction to apply to the output.
|
99 |
+
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
|
100 |
+
eps (float): A value used to control the curvature near zero.
|
101 |
+
Default: 1e-12.
|
102 |
+
"""
|
103 |
+
|
104 |
+
def __init__(self, loss_weight=1.0, reduction='mean', eps=1e-12):
|
105 |
+
super(CharbonnierLoss, self).__init__()
|
106 |
+
if reduction not in ['none', 'mean', 'sum']:
|
107 |
+
raise ValueError(f'Unsupported reduction mode: {reduction}. ' f'Supported ones are: {_reduction_modes}')
|
108 |
+
|
109 |
+
self.loss_weight = loss_weight
|
110 |
+
self.reduction = reduction
|
111 |
+
self.eps = eps
|
112 |
+
|
113 |
+
def forward(self, pred, target, weight=None, **kwargs):
|
114 |
+
"""
|
115 |
+
Args:
|
116 |
+
pred (Tensor): of shape (N, C, H, W). Predicted tensor.
|
117 |
+
target (Tensor): of shape (N, C, H, W). Ground truth tensor.
|
118 |
+
weight (Tensor, optional): of shape (N, C, H, W). Element-wise
|
119 |
+
weights. Default: None.
|
120 |
+
"""
|
121 |
+
return self.loss_weight * charbonnier_loss(pred, target, weight, eps=self.eps, reduction=self.reduction)
|
122 |
+
|
123 |
+
|
124 |
+
@LOSS_REGISTRY.register()
|
125 |
+
class WeightedTVLoss(L1Loss):
|
126 |
+
"""Weighted TV loss.
|
127 |
+
|
128 |
+
Args:
|
129 |
+
loss_weight (float): Loss weight. Default: 1.0.
|
130 |
+
"""
|
131 |
+
|
132 |
+
def __init__(self, loss_weight=1.0):
|
133 |
+
super(WeightedTVLoss, self).__init__(loss_weight=loss_weight)
|
134 |
+
|
135 |
+
def forward(self, pred, weight=None):
|
136 |
+
y_diff = super(WeightedTVLoss, self).forward(pred[:, :, :-1, :], pred[:, :, 1:, :], weight=weight[:, :, :-1, :])
|
137 |
+
x_diff = super(WeightedTVLoss, self).forward(pred[:, :, :, :-1], pred[:, :, :, 1:], weight=weight[:, :, :, :-1])
|
138 |
+
|
139 |
+
loss = x_diff + y_diff
|
140 |
+
|
141 |
+
return loss
|
142 |
+
|
143 |
+
|
144 |
+
@LOSS_REGISTRY.register()
|
145 |
+
class PerceptualLoss(nn.Module):
|
146 |
+
"""Perceptual loss with commonly used style loss.
|
147 |
+
|
148 |
+
Args:
|
149 |
+
layer_weights (dict): The weight for each layer of vgg feature.
|
150 |
+
Here is an example: {'conv5_4': 1.}, which means the conv5_4
|
151 |
+
feature layer (before relu5_4) will be extracted with weight
|
152 |
+
1.0 in calculting losses.
|
153 |
+
vgg_type (str): The type of vgg network used as feature extractor.
|
154 |
+
Default: 'vgg19'.
|
155 |
+
use_input_norm (bool): If True, normalize the input image in vgg.
|
156 |
+
Default: True.
|
157 |
+
range_norm (bool): If True, norm images with range [-1, 1] to [0, 1].
|
158 |
+
Default: False.
|
159 |
+
perceptual_weight (float): If `perceptual_weight > 0`, the perceptual
|
160 |
+
loss will be calculated and the loss will multiplied by the
|
161 |
+
weight. Default: 1.0.
|
162 |
+
style_weight (float): If `style_weight > 0`, the style loss will be
|
163 |
+
calculated and the loss will multiplied by the weight.
|
164 |
+
Default: 0.
|
165 |
+
criterion (str): Criterion used for perceptual loss. Default: 'l1'.
|
166 |
+
"""
|
167 |
+
|
168 |
+
def __init__(self,
|
169 |
+
layer_weights,
|
170 |
+
vgg_type='vgg19',
|
171 |
+
use_input_norm=True,
|
172 |
+
range_norm=False,
|
173 |
+
perceptual_weight=1.0,
|
174 |
+
style_weight=0.,
|
175 |
+
criterion='l1'):
|
176 |
+
super(PerceptualLoss, self).__init__()
|
177 |
+
self.perceptual_weight = perceptual_weight
|
178 |
+
self.style_weight = style_weight
|
179 |
+
self.layer_weights = layer_weights
|
180 |
+
self.vgg = VGGFeatureExtractor(
|
181 |
+
layer_name_list=list(layer_weights.keys()),
|
182 |
+
vgg_type=vgg_type,
|
183 |
+
use_input_norm=use_input_norm,
|
184 |
+
range_norm=range_norm)
|
185 |
+
|
186 |
+
self.criterion_type = criterion
|
187 |
+
if self.criterion_type == 'l1':
|
188 |
+
self.criterion = torch.nn.L1Loss()
|
189 |
+
elif self.criterion_type == 'l2':
|
190 |
+
self.criterion = torch.nn.L2loss()
|
191 |
+
elif self.criterion_type == 'mse':
|
192 |
+
self.criterion = torch.nn.MSELoss(reduction='mean')
|
193 |
+
elif self.criterion_type == 'fro':
|
194 |
+
self.criterion = None
|
195 |
+
else:
|
196 |
+
raise NotImplementedError(f'{criterion} criterion has not been supported.')
|
197 |
+
|
198 |
+
def forward(self, x, gt):
|
199 |
+
"""Forward function.
|
200 |
+
|
201 |
+
Args:
|
202 |
+
x (Tensor): Input tensor with shape (n, c, h, w).
|
203 |
+
gt (Tensor): Ground-truth tensor with shape (n, c, h, w).
|
204 |
+
|
205 |
+
Returns:
|
206 |
+
Tensor: Forward results.
|
207 |
+
"""
|
208 |
+
# extract vgg features
|
209 |
+
x_features = self.vgg(x)
|
210 |
+
gt_features = self.vgg(gt.detach())
|
211 |
+
|
212 |
+
# calculate perceptual loss
|
213 |
+
if self.perceptual_weight > 0:
|
214 |
+
percep_loss = 0
|
215 |
+
for k in x_features.keys():
|
216 |
+
if self.criterion_type == 'fro':
|
217 |
+
percep_loss += torch.norm(x_features[k] - gt_features[k], p='fro') * self.layer_weights[k]
|
218 |
+
else:
|
219 |
+
percep_loss += self.criterion(x_features[k], gt_features[k]) * self.layer_weights[k]
|
220 |
+
percep_loss *= self.perceptual_weight
|
221 |
+
else:
|
222 |
+
percep_loss = None
|
223 |
+
|
224 |
+
# calculate style loss
|
225 |
+
if self.style_weight > 0:
|
226 |
+
style_loss = 0
|
227 |
+
for k in x_features.keys():
|
228 |
+
if self.criterion_type == 'fro':
|
229 |
+
style_loss += torch.norm(
|
230 |
+
self._gram_mat(x_features[k]) - self._gram_mat(gt_features[k]), p='fro') * self.layer_weights[k]
|
231 |
+
else:
|
232 |
+
style_loss += self.criterion(self._gram_mat(x_features[k]), self._gram_mat(
|
233 |
+
gt_features[k])) * self.layer_weights[k]
|
234 |
+
style_loss *= self.style_weight
|
235 |
+
else:
|
236 |
+
style_loss = None
|
237 |
+
|
238 |
+
return percep_loss, style_loss
|
239 |
+
|
240 |
+
def _gram_mat(self, x):
|
241 |
+
"""Calculate Gram matrix.
|
242 |
+
|
243 |
+
Args:
|
244 |
+
x (torch.Tensor): Tensor with shape of (n, c, h, w).
|
245 |
+
|
246 |
+
Returns:
|
247 |
+
torch.Tensor: Gram matrix.
|
248 |
+
"""
|
249 |
+
n, c, h, w = x.size()
|
250 |
+
features = x.view(n, c, w * h)
|
251 |
+
features_t = features.transpose(1, 2)
|
252 |
+
gram = features.bmm(features_t) / (c * h * w)
|
253 |
+
return gram
|
254 |
+
|
255 |
+
|
256 |
+
@LOSS_REGISTRY.register()
|
257 |
+
class LPIPSLoss(nn.Module):
|
258 |
+
def __init__(self,
|
259 |
+
loss_weight=1.0,
|
260 |
+
use_input_norm=True,
|
261 |
+
range_norm=False,):
|
262 |
+
super(LPIPSLoss, self).__init__()
|
263 |
+
self.perceptual = lpips.LPIPS(net="vgg", spatial=False).eval()
|
264 |
+
self.loss_weight = loss_weight
|
265 |
+
self.use_input_norm = use_input_norm
|
266 |
+
self.range_norm = range_norm
|
267 |
+
|
268 |
+
if self.use_input_norm:
|
269 |
+
# the mean is for image with range [0, 1]
|
270 |
+
self.register_buffer('mean', torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1))
|
271 |
+
# the std is for image with range [0, 1]
|
272 |
+
self.register_buffer('std', torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1))
|
273 |
+
|
274 |
+
def forward(self, pred, target):
|
275 |
+
if self.range_norm:
|
276 |
+
pred = (pred + 1) / 2
|
277 |
+
target = (target + 1) / 2
|
278 |
+
if self.use_input_norm:
|
279 |
+
pred = (pred - self.mean) / self.std
|
280 |
+
target = (target - self.mean) / self.std
|
281 |
+
lpips_loss = self.perceptual(target.contiguous(), pred.contiguous())
|
282 |
+
return self.loss_weight * lpips_loss.mean()
|
283 |
+
|
284 |
+
|
285 |
+
@LOSS_REGISTRY.register()
|
286 |
+
class GANLoss(nn.Module):
|
287 |
+
"""Define GAN loss.
|
288 |
+
|
289 |
+
Args:
|
290 |
+
gan_type (str): Support 'vanilla', 'lsgan', 'wgan', 'hinge'.
|
291 |
+
real_label_val (float): The value for real label. Default: 1.0.
|
292 |
+
fake_label_val (float): The value for fake label. Default: 0.0.
|
293 |
+
loss_weight (float): Loss weight. Default: 1.0.
|
294 |
+
Note that loss_weight is only for generators; and it is always 1.0
|
295 |
+
for discriminators.
|
296 |
+
"""
|
297 |
+
|
298 |
+
def __init__(self, gan_type, real_label_val=1.0, fake_label_val=0.0, loss_weight=1.0):
|
299 |
+
super(GANLoss, self).__init__()
|
300 |
+
self.gan_type = gan_type
|
301 |
+
self.loss_weight = loss_weight
|
302 |
+
self.real_label_val = real_label_val
|
303 |
+
self.fake_label_val = fake_label_val
|
304 |
+
|
305 |
+
if self.gan_type == 'vanilla':
|
306 |
+
self.loss = nn.BCEWithLogitsLoss()
|
307 |
+
elif self.gan_type == 'lsgan':
|
308 |
+
self.loss = nn.MSELoss()
|
309 |
+
elif self.gan_type == 'wgan':
|
310 |
+
self.loss = self._wgan_loss
|
311 |
+
elif self.gan_type == 'wgan_softplus':
|
312 |
+
self.loss = self._wgan_softplus_loss
|
313 |
+
elif self.gan_type == 'hinge':
|
314 |
+
self.loss = nn.ReLU()
|
315 |
+
else:
|
316 |
+
raise NotImplementedError(f'GAN type {self.gan_type} is not implemented.')
|
317 |
+
|
318 |
+
def _wgan_loss(self, input, target):
|
319 |
+
"""wgan loss.
|
320 |
+
|
321 |
+
Args:
|
322 |
+
input (Tensor): Input tensor.
|
323 |
+
target (bool): Target label.
|
324 |
+
|
325 |
+
Returns:
|
326 |
+
Tensor: wgan loss.
|
327 |
+
"""
|
328 |
+
return -input.mean() if target else input.mean()
|
329 |
+
|
330 |
+
def _wgan_softplus_loss(self, input, target):
|
331 |
+
"""wgan loss with soft plus. softplus is a smooth approximation to the
|
332 |
+
ReLU function.
|
333 |
+
|
334 |
+
In StyleGAN2, it is called:
|
335 |
+
Logistic loss for discriminator;
|
336 |
+
Non-saturating loss for generator.
|
337 |
+
|
338 |
+
Args:
|
339 |
+
input (Tensor): Input tensor.
|
340 |
+
target (bool): Target label.
|
341 |
+
|
342 |
+
Returns:
|
343 |
+
Tensor: wgan loss.
|
344 |
+
"""
|
345 |
+
return F.softplus(-input).mean() if target else F.softplus(input).mean()
|
346 |
+
|
347 |
+
def get_target_label(self, input, target_is_real):
|
348 |
+
"""Get target label.
|
349 |
+
|
350 |
+
Args:
|
351 |
+
input (Tensor): Input tensor.
|
352 |
+
target_is_real (bool): Whether the target is real or fake.
|
353 |
+
|
354 |
+
Returns:
|
355 |
+
(bool | Tensor): Target tensor. Return bool for wgan, otherwise,
|
356 |
+
return Tensor.
|
357 |
+
"""
|
358 |
+
|
359 |
+
if self.gan_type in ['wgan', 'wgan_softplus']:
|
360 |
+
return target_is_real
|
361 |
+
target_val = (self.real_label_val if target_is_real else self.fake_label_val)
|
362 |
+
return input.new_ones(input.size()) * target_val
|
363 |
+
|
364 |
+
def forward(self, input, target_is_real, is_disc=False):
|
365 |
+
"""
|
366 |
+
Args:
|
367 |
+
input (Tensor): The input for the loss module, i.e., the network
|
368 |
+
prediction.
|
369 |
+
target_is_real (bool): Whether the targe is real or fake.
|
370 |
+
is_disc (bool): Whether the loss for discriminators or not.
|
371 |
+
Default: False.
|
372 |
+
|
373 |
+
Returns:
|
374 |
+
Tensor: GAN loss value.
|
375 |
+
"""
|
376 |
+
if self.gan_type == 'hinge':
|
377 |
+
if is_disc: # for discriminators in hinge-gan
|
378 |
+
input = -input if target_is_real else input
|
379 |
+
loss = self.loss(1 + input).mean()
|
380 |
+
else: # for generators in hinge-gan
|
381 |
+
loss = -input.mean()
|
382 |
+
else: # other gan types
|
383 |
+
target_label = self.get_target_label(input, target_is_real)
|
384 |
+
loss = self.loss(input, target_label)
|
385 |
+
|
386 |
+
# loss_weight is always 1.0 for discriminators
|
387 |
+
return loss if is_disc else loss * self.loss_weight
|
388 |
+
|
389 |
+
|
390 |
+
def r1_penalty(real_pred, real_img):
|
391 |
+
"""R1 regularization for discriminator. The core idea is to
|
392 |
+
penalize the gradient on real data alone: when the
|
393 |
+
generator distribution produces the true data distribution
|
394 |
+
and the discriminator is equal to 0 on the data manifold, the
|
395 |
+
gradient penalty ensures that the discriminator cannot create
|
396 |
+
a non-zero gradient orthogonal to the data manifold without
|
397 |
+
suffering a loss in the GAN game.
|
398 |
+
|
399 |
+
Ref:
|
400 |
+
Eq. 9 in Which training methods for GANs do actually converge.
|
401 |
+
"""
|
402 |
+
grad_real = autograd.grad(outputs=real_pred.sum(), inputs=real_img, create_graph=True)[0]
|
403 |
+
grad_penalty = grad_real.pow(2).view(grad_real.shape[0], -1).sum(1).mean()
|
404 |
+
return grad_penalty
|
405 |
+
|
406 |
+
|
407 |
+
def g_path_regularize(fake_img, latents, mean_path_length, decay=0.01):
|
408 |
+
noise = torch.randn_like(fake_img) / math.sqrt(fake_img.shape[2] * fake_img.shape[3])
|
409 |
+
grad = autograd.grad(outputs=(fake_img * noise).sum(), inputs=latents, create_graph=True)[0]
|
410 |
+
path_lengths = torch.sqrt(grad.pow(2).sum(2).mean(1))
|
411 |
+
|
412 |
+
path_mean = mean_path_length + decay * (path_lengths.mean() - mean_path_length)
|
413 |
+
|
414 |
+
path_penalty = (path_lengths - path_mean).pow(2).mean()
|
415 |
+
|
416 |
+
return path_penalty, path_lengths.detach().mean(), path_mean.detach()
|
417 |
+
|
418 |
+
|
419 |
+
def gradient_penalty_loss(discriminator, real_data, fake_data, weight=None):
|
420 |
+
"""Calculate gradient penalty for wgan-gp.
|
421 |
+
|
422 |
+
Args:
|
423 |
+
discriminator (nn.Module): Network for the discriminator.
|
424 |
+
real_data (Tensor): Real input data.
|
425 |
+
fake_data (Tensor): Fake input data.
|
426 |
+
weight (Tensor): Weight tensor. Default: None.
|
427 |
+
|
428 |
+
Returns:
|
429 |
+
Tensor: A tensor for gradient penalty.
|
430 |
+
"""
|
431 |
+
|
432 |
+
batch_size = real_data.size(0)
|
433 |
+
alpha = real_data.new_tensor(torch.rand(batch_size, 1, 1, 1))
|
434 |
+
|
435 |
+
# interpolate between real_data and fake_data
|
436 |
+
interpolates = alpha * real_data + (1. - alpha) * fake_data
|
437 |
+
interpolates = autograd.Variable(interpolates, requires_grad=True)
|
438 |
+
|
439 |
+
disc_interpolates = discriminator(interpolates)
|
440 |
+
gradients = autograd.grad(
|
441 |
+
outputs=disc_interpolates,
|
442 |
+
inputs=interpolates,
|
443 |
+
grad_outputs=torch.ones_like(disc_interpolates),
|
444 |
+
create_graph=True,
|
445 |
+
retain_graph=True,
|
446 |
+
only_inputs=True)[0]
|
447 |
+
|
448 |
+
if weight is not None:
|
449 |
+
gradients = gradients * weight
|
450 |
+
|
451 |
+
gradients_penalty = ((gradients.norm(2, dim=1) - 1)**2).mean()
|
452 |
+
if weight is not None:
|
453 |
+
gradients_penalty /= torch.mean(weight)
|
454 |
+
|
455 |
+
return gradients_penalty
|
CodeFormer/basicsr/metrics/__init__.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from copy import deepcopy
|
2 |
+
|
3 |
+
from basicsr.utils.registry import METRIC_REGISTRY
|
4 |
+
from .psnr_ssim import calculate_psnr, calculate_ssim
|
5 |
+
|
6 |
+
__all__ = ['calculate_psnr', 'calculate_ssim']
|
7 |
+
|
8 |
+
|
9 |
+
def calculate_metric(data, opt):
|
10 |
+
"""Calculate metric from data and options.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
opt (dict): Configuration. It must constain:
|
14 |
+
type (str): Model type.
|
15 |
+
"""
|
16 |
+
opt = deepcopy(opt)
|
17 |
+
metric_type = opt.pop('type')
|
18 |
+
metric = METRIC_REGISTRY.get(metric_type)(**data, **opt)
|
19 |
+
return metric
|
CodeFormer/basicsr/metrics/metric_util.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
from basicsr.utils.matlab_functions import bgr2ycbcr
|
4 |
+
|
5 |
+
|
6 |
+
def reorder_image(img, input_order='HWC'):
|
7 |
+
"""Reorder images to 'HWC' order.
|
8 |
+
|
9 |
+
If the input_order is (h, w), return (h, w, 1);
|
10 |
+
If the input_order is (c, h, w), return (h, w, c);
|
11 |
+
If the input_order is (h, w, c), return as it is.
|
12 |
+
|
13 |
+
Args:
|
14 |
+
img (ndarray): Input image.
|
15 |
+
input_order (str): Whether the input order is 'HWC' or 'CHW'.
|
16 |
+
If the input image shape is (h, w), input_order will not have
|
17 |
+
effects. Default: 'HWC'.
|
18 |
+
|
19 |
+
Returns:
|
20 |
+
ndarray: reordered image.
|
21 |
+
"""
|
22 |
+
|
23 |
+
if input_order not in ['HWC', 'CHW']:
|
24 |
+
raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' "'HWC' and 'CHW'")
|
25 |
+
if len(img.shape) == 2:
|
26 |
+
img = img[..., None]
|
27 |
+
if input_order == 'CHW':
|
28 |
+
img = img.transpose(1, 2, 0)
|
29 |
+
return img
|
30 |
+
|
31 |
+
|
32 |
+
def to_y_channel(img):
|
33 |
+
"""Change to Y channel of YCbCr.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
img (ndarray): Images with range [0, 255].
|
37 |
+
|
38 |
+
Returns:
|
39 |
+
(ndarray): Images with range [0, 255] (float type) without round.
|
40 |
+
"""
|
41 |
+
img = img.astype(np.float32) / 255.
|
42 |
+
if img.ndim == 3 and img.shape[2] == 3:
|
43 |
+
img = bgr2ycbcr(img, y_only=True)
|
44 |
+
img = img[..., None]
|
45 |
+
return img * 255.
|
CodeFormer/basicsr/metrics/psnr_ssim.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
from basicsr.metrics.metric_util import reorder_image, to_y_channel
|
5 |
+
from basicsr.utils.registry import METRIC_REGISTRY
|
6 |
+
|
7 |
+
|
8 |
+
@METRIC_REGISTRY.register()
|
9 |
+
def calculate_psnr(img1, img2, crop_border, input_order='HWC', test_y_channel=False):
|
10 |
+
"""Calculate PSNR (Peak Signal-to-Noise Ratio).
|
11 |
+
|
12 |
+
Ref: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
|
13 |
+
|
14 |
+
Args:
|
15 |
+
img1 (ndarray): Images with range [0, 255].
|
16 |
+
img2 (ndarray): Images with range [0, 255].
|
17 |
+
crop_border (int): Cropped pixels in each edge of an image. These
|
18 |
+
pixels are not involved in the PSNR calculation.
|
19 |
+
input_order (str): Whether the input order is 'HWC' or 'CHW'.
|
20 |
+
Default: 'HWC'.
|
21 |
+
test_y_channel (bool): Test on Y channel of YCbCr. Default: False.
|
22 |
+
|
23 |
+
Returns:
|
24 |
+
float: psnr result.
|
25 |
+
"""
|
26 |
+
|
27 |
+
assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.')
|
28 |
+
if input_order not in ['HWC', 'CHW']:
|
29 |
+
raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"')
|
30 |
+
img1 = reorder_image(img1, input_order=input_order)
|
31 |
+
img2 = reorder_image(img2, input_order=input_order)
|
32 |
+
img1 = img1.astype(np.float64)
|
33 |
+
img2 = img2.astype(np.float64)
|
34 |
+
|
35 |
+
if crop_border != 0:
|
36 |
+
img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...]
|
37 |
+
img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...]
|
38 |
+
|
39 |
+
if test_y_channel:
|
40 |
+
img1 = to_y_channel(img1)
|
41 |
+
img2 = to_y_channel(img2)
|
42 |
+
|
43 |
+
mse = np.mean((img1 - img2)**2)
|
44 |
+
if mse == 0:
|
45 |
+
return float('inf')
|
46 |
+
return 20. * np.log10(255. / np.sqrt(mse))
|
47 |
+
|
48 |
+
|
49 |
+
def _ssim(img1, img2):
|
50 |
+
"""Calculate SSIM (structural similarity) for one channel images.
|
51 |
+
|
52 |
+
It is called by func:`calculate_ssim`.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
img1 (ndarray): Images with range [0, 255] with order 'HWC'.
|
56 |
+
img2 (ndarray): Images with range [0, 255] with order 'HWC'.
|
57 |
+
|
58 |
+
Returns:
|
59 |
+
float: ssim result.
|
60 |
+
"""
|
61 |
+
|
62 |
+
C1 = (0.01 * 255)**2
|
63 |
+
C2 = (0.03 * 255)**2
|
64 |
+
|
65 |
+
img1 = img1.astype(np.float64)
|
66 |
+
img2 = img2.astype(np.float64)
|
67 |
+
kernel = cv2.getGaussianKernel(11, 1.5)
|
68 |
+
window = np.outer(kernel, kernel.transpose())
|
69 |
+
|
70 |
+
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5]
|
71 |
+
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
|
72 |
+
mu1_sq = mu1**2
|
73 |
+
mu2_sq = mu2**2
|
74 |
+
mu1_mu2 = mu1 * mu2
|
75 |
+
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
|
76 |
+
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
|
77 |
+
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
|
78 |
+
|
79 |
+
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
|
80 |
+
return ssim_map.mean()
|
81 |
+
|
82 |
+
|
83 |
+
@METRIC_REGISTRY.register()
|
84 |
+
def calculate_ssim(img1, img2, crop_border, input_order='HWC', test_y_channel=False):
|
85 |
+
"""Calculate SSIM (structural similarity).
|
86 |
+
|
87 |
+
Ref:
|
88 |
+
Image quality assessment: From error visibility to structural similarity
|
89 |
+
|
90 |
+
The results are the same as that of the official released MATLAB code in
|
91 |
+
https://ece.uwaterloo.ca/~z70wang/research/ssim/.
|
92 |
+
|
93 |
+
For three-channel images, SSIM is calculated for each channel and then
|
94 |
+
averaged.
|
95 |
+
|
96 |
+
Args:
|
97 |
+
img1 (ndarray): Images with range [0, 255].
|
98 |
+
img2 (ndarray): Images with range [0, 255].
|
99 |
+
crop_border (int): Cropped pixels in each edge of an image. These
|
100 |
+
pixels are not involved in the SSIM calculation.
|
101 |
+
input_order (str): Whether the input order is 'HWC' or 'CHW'.
|
102 |
+
Default: 'HWC'.
|
103 |
+
test_y_channel (bool): Test on Y channel of YCbCr. Default: False.
|
104 |
+
|
105 |
+
Returns:
|
106 |
+
float: ssim result.
|
107 |
+
"""
|
108 |
+
|
109 |
+
assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.')
|
110 |
+
if input_order not in ['HWC', 'CHW']:
|
111 |
+
raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"')
|
112 |
+
img1 = reorder_image(img1, input_order=input_order)
|
113 |
+
img2 = reorder_image(img2, input_order=input_order)
|
114 |
+
img1 = img1.astype(np.float64)
|
115 |
+
img2 = img2.astype(np.float64)
|
116 |
+
|
117 |
+
if crop_border != 0:
|
118 |
+
img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...]
|
119 |
+
img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...]
|
120 |
+
|
121 |
+
if test_y_channel:
|
122 |
+
img1 = to_y_channel(img1)
|
123 |
+
img2 = to_y_channel(img2)
|
124 |
+
|
125 |
+
ssims = []
|
126 |
+
for i in range(img1.shape[2]):
|
127 |
+
ssims.append(_ssim(img1[..., i], img2[..., i]))
|
128 |
+
return np.array(ssims).mean()
|
CodeFormer/basicsr/models/__init__.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
from copy import deepcopy
|
3 |
+
from os import path as osp
|
4 |
+
|
5 |
+
from basicsr.utils import get_root_logger, scandir
|
6 |
+
from basicsr.utils.registry import MODEL_REGISTRY
|
7 |
+
|
8 |
+
__all__ = ['build_model']
|
9 |
+
|
10 |
+
# automatically scan and import model modules for registry
|
11 |
+
# scan all the files under the 'models' folder and collect files ending with
|
12 |
+
# '_model.py'
|
13 |
+
model_folder = osp.dirname(osp.abspath(__file__))
|
14 |
+
model_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(model_folder) if v.endswith('_model.py')]
|
15 |
+
# import all the model modules
|
16 |
+
_model_modules = [importlib.import_module(f'basicsr.models.{file_name}') for file_name in model_filenames]
|
17 |
+
|
18 |
+
|
19 |
+
def build_model(opt):
|
20 |
+
"""Build model from options.
|
21 |
+
|
22 |
+
Args:
|
23 |
+
opt (dict): Configuration. It must constain:
|
24 |
+
model_type (str): Model type.
|
25 |
+
"""
|
26 |
+
opt = deepcopy(opt)
|
27 |
+
model = MODEL_REGISTRY.get(opt['model_type'])(opt)
|
28 |
+
logger = get_root_logger()
|
29 |
+
logger.info(f'Model [{model.__class__.__name__}] is created.')
|
30 |
+
return model
|
CodeFormer/basicsr/ops/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
CodeFormer/basicsr/ops/__init__.py
ADDED
File without changes
|
CodeFormer/basicsr/ops/dcn/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .deform_conv import (DeformConv, DeformConvPack, ModulatedDeformConv, ModulatedDeformConvPack, deform_conv,
|
2 |
+
modulated_deform_conv)
|
3 |
+
|
4 |
+
__all__ = [
|
5 |
+
'DeformConv', 'DeformConvPack', 'ModulatedDeformConv', 'ModulatedDeformConvPack', 'deform_conv',
|
6 |
+
'modulated_deform_conv'
|
7 |
+
]
|
CodeFormer/basicsr/ops/dcn/deform_conv.py
ADDED
@@ -0,0 +1,377 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn as nn
|
4 |
+
from torch.autograd import Function
|
5 |
+
from torch.autograd.function import once_differentiable
|
6 |
+
from torch.nn import functional as F
|
7 |
+
from torch.nn.modules.utils import _pair, _single
|
8 |
+
|
9 |
+
try:
|
10 |
+
from . import deform_conv_ext
|
11 |
+
except ImportError:
|
12 |
+
import os
|
13 |
+
BASICSR_JIT = os.getenv('BASICSR_JIT')
|
14 |
+
if BASICSR_JIT == 'True':
|
15 |
+
from torch.utils.cpp_extension import load
|
16 |
+
module_path = os.path.dirname(__file__)
|
17 |
+
deform_conv_ext = load(
|
18 |
+
'deform_conv',
|
19 |
+
sources=[
|
20 |
+
os.path.join(module_path, 'src', 'deform_conv_ext.cpp'),
|
21 |
+
os.path.join(module_path, 'src', 'deform_conv_cuda.cpp'),
|
22 |
+
os.path.join(module_path, 'src', 'deform_conv_cuda_kernel.cu'),
|
23 |
+
],
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
class DeformConvFunction(Function):
|
28 |
+
|
29 |
+
@staticmethod
|
30 |
+
def forward(ctx,
|
31 |
+
input,
|
32 |
+
offset,
|
33 |
+
weight,
|
34 |
+
stride=1,
|
35 |
+
padding=0,
|
36 |
+
dilation=1,
|
37 |
+
groups=1,
|
38 |
+
deformable_groups=1,
|
39 |
+
im2col_step=64):
|
40 |
+
if input is not None and input.dim() != 4:
|
41 |
+
raise ValueError(f'Expected 4D tensor as input, got {input.dim()}' 'D tensor instead.')
|
42 |
+
ctx.stride = _pair(stride)
|
43 |
+
ctx.padding = _pair(padding)
|
44 |
+
ctx.dilation = _pair(dilation)
|
45 |
+
ctx.groups = groups
|
46 |
+
ctx.deformable_groups = deformable_groups
|
47 |
+
ctx.im2col_step = im2col_step
|
48 |
+
|
49 |
+
ctx.save_for_backward(input, offset, weight)
|
50 |
+
|
51 |
+
output = input.new_empty(DeformConvFunction._output_size(input, weight, ctx.padding, ctx.dilation, ctx.stride))
|
52 |
+
|
53 |
+
ctx.bufs_ = [input.new_empty(0), input.new_empty(0)] # columns, ones
|
54 |
+
|
55 |
+
if not input.is_cuda:
|
56 |
+
raise NotImplementedError
|
57 |
+
else:
|
58 |
+
cur_im2col_step = min(ctx.im2col_step, input.shape[0])
|
59 |
+
assert (input.shape[0] % cur_im2col_step) == 0, 'im2col step must divide batchsize'
|
60 |
+
deform_conv_ext.deform_conv_forward(input, weight,
|
61 |
+
offset, output, ctx.bufs_[0], ctx.bufs_[1], weight.size(3),
|
62 |
+
weight.size(2), ctx.stride[1], ctx.stride[0], ctx.padding[1],
|
63 |
+
ctx.padding[0], ctx.dilation[1], ctx.dilation[0], ctx.groups,
|
64 |
+
ctx.deformable_groups, cur_im2col_step)
|
65 |
+
return output
|
66 |
+
|
67 |
+
@staticmethod
|
68 |
+
@once_differentiable
|
69 |
+
def backward(ctx, grad_output):
|
70 |
+
input, offset, weight = ctx.saved_tensors
|
71 |
+
|
72 |
+
grad_input = grad_offset = grad_weight = None
|
73 |
+
|
74 |
+
if not grad_output.is_cuda:
|
75 |
+
raise NotImplementedError
|
76 |
+
else:
|
77 |
+
cur_im2col_step = min(ctx.im2col_step, input.shape[0])
|
78 |
+
assert (input.shape[0] % cur_im2col_step) == 0, 'im2col step must divide batchsize'
|
79 |
+
|
80 |
+
if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]:
|
81 |
+
grad_input = torch.zeros_like(input)
|
82 |
+
grad_offset = torch.zeros_like(offset)
|
83 |
+
deform_conv_ext.deform_conv_backward_input(input, offset, grad_output, grad_input,
|
84 |
+
grad_offset, weight, ctx.bufs_[0], weight.size(3),
|
85 |
+
weight.size(2), ctx.stride[1], ctx.stride[0], ctx.padding[1],
|
86 |
+
ctx.padding[0], ctx.dilation[1], ctx.dilation[0], ctx.groups,
|
87 |
+
ctx.deformable_groups, cur_im2col_step)
|
88 |
+
|
89 |
+
if ctx.needs_input_grad[2]:
|
90 |
+
grad_weight = torch.zeros_like(weight)
|
91 |
+
deform_conv_ext.deform_conv_backward_parameters(input, offset, grad_output, grad_weight,
|
92 |
+
ctx.bufs_[0], ctx.bufs_[1], weight.size(3),
|
93 |
+
weight.size(2), ctx.stride[1], ctx.stride[0],
|
94 |
+
ctx.padding[1], ctx.padding[0], ctx.dilation[1],
|
95 |
+
ctx.dilation[0], ctx.groups, ctx.deformable_groups, 1,
|
96 |
+
cur_im2col_step)
|
97 |
+
|
98 |
+
return (grad_input, grad_offset, grad_weight, None, None, None, None, None)
|
99 |
+
|
100 |
+
@staticmethod
|
101 |
+
def _output_size(input, weight, padding, dilation, stride):
|
102 |
+
channels = weight.size(0)
|
103 |
+
output_size = (input.size(0), channels)
|
104 |
+
for d in range(input.dim() - 2):
|
105 |
+
in_size = input.size(d + 2)
|
106 |
+
pad = padding[d]
|
107 |
+
kernel = dilation[d] * (weight.size(d + 2) - 1) + 1
|
108 |
+
stride_ = stride[d]
|
109 |
+
output_size += ((in_size + (2 * pad) - kernel) // stride_ + 1, )
|
110 |
+
if not all(map(lambda s: s > 0, output_size)):
|
111 |
+
raise ValueError('convolution input is too small (output would be ' f'{"x".join(map(str, output_size))})')
|
112 |
+
return output_size
|
113 |
+
|
114 |
+
|
115 |
+
class ModulatedDeformConvFunction(Function):
|
116 |
+
|
117 |
+
@staticmethod
|
118 |
+
def forward(ctx,
|
119 |
+
input,
|
120 |
+
offset,
|
121 |
+
mask,
|
122 |
+
weight,
|
123 |
+
bias=None,
|
124 |
+
stride=1,
|
125 |
+
padding=0,
|
126 |
+
dilation=1,
|
127 |
+
groups=1,
|
128 |
+
deformable_groups=1):
|
129 |
+
ctx.stride = stride
|
130 |
+
ctx.padding = padding
|
131 |
+
ctx.dilation = dilation
|
132 |
+
ctx.groups = groups
|
133 |
+
ctx.deformable_groups = deformable_groups
|
134 |
+
ctx.with_bias = bias is not None
|
135 |
+
if not ctx.with_bias:
|
136 |
+
bias = input.new_empty(1) # fake tensor
|
137 |
+
if not input.is_cuda:
|
138 |
+
raise NotImplementedError
|
139 |
+
if weight.requires_grad or mask.requires_grad or offset.requires_grad \
|
140 |
+
or input.requires_grad:
|
141 |
+
ctx.save_for_backward(input, offset, mask, weight, bias)
|
142 |
+
output = input.new_empty(ModulatedDeformConvFunction._infer_shape(ctx, input, weight))
|
143 |
+
ctx._bufs = [input.new_empty(0), input.new_empty(0)]
|
144 |
+
deform_conv_ext.modulated_deform_conv_forward(input, weight, bias, ctx._bufs[0], offset, mask, output,
|
145 |
+
ctx._bufs[1], weight.shape[2], weight.shape[3], ctx.stride,
|
146 |
+
ctx.stride, ctx.padding, ctx.padding, ctx.dilation, ctx.dilation,
|
147 |
+
ctx.groups, ctx.deformable_groups, ctx.with_bias)
|
148 |
+
return output
|
149 |
+
|
150 |
+
@staticmethod
|
151 |
+
@once_differentiable
|
152 |
+
def backward(ctx, grad_output):
|
153 |
+
if not grad_output.is_cuda:
|
154 |
+
raise NotImplementedError
|
155 |
+
input, offset, mask, weight, bias = ctx.saved_tensors
|
156 |
+
grad_input = torch.zeros_like(input)
|
157 |
+
grad_offset = torch.zeros_like(offset)
|
158 |
+
grad_mask = torch.zeros_like(mask)
|
159 |
+
grad_weight = torch.zeros_like(weight)
|
160 |
+
grad_bias = torch.zeros_like(bias)
|
161 |
+
deform_conv_ext.modulated_deform_conv_backward(input, weight, bias, ctx._bufs[0], offset, mask, ctx._bufs[1],
|
162 |
+
grad_input, grad_weight, grad_bias, grad_offset, grad_mask,
|
163 |
+
grad_output, weight.shape[2], weight.shape[3], ctx.stride,
|
164 |
+
ctx.stride, ctx.padding, ctx.padding, ctx.dilation, ctx.dilation,
|
165 |
+
ctx.groups, ctx.deformable_groups, ctx.with_bias)
|
166 |
+
if not ctx.with_bias:
|
167 |
+
grad_bias = None
|
168 |
+
|
169 |
+
return (grad_input, grad_offset, grad_mask, grad_weight, grad_bias, None, None, None, None, None)
|
170 |
+
|
171 |
+
@staticmethod
|
172 |
+
def _infer_shape(ctx, input, weight):
|
173 |
+
n = input.size(0)
|
174 |
+
channels_out = weight.size(0)
|
175 |
+
height, width = input.shape[2:4]
|
176 |
+
kernel_h, kernel_w = weight.shape[2:4]
|
177 |
+
height_out = (height + 2 * ctx.padding - (ctx.dilation * (kernel_h - 1) + 1)) // ctx.stride + 1
|
178 |
+
width_out = (width + 2 * ctx.padding - (ctx.dilation * (kernel_w - 1) + 1)) // ctx.stride + 1
|
179 |
+
return n, channels_out, height_out, width_out
|
180 |
+
|
181 |
+
|
182 |
+
deform_conv = DeformConvFunction.apply
|
183 |
+
modulated_deform_conv = ModulatedDeformConvFunction.apply
|
184 |
+
|
185 |
+
|
186 |
+
class DeformConv(nn.Module):
|
187 |
+
|
188 |
+
def __init__(self,
|
189 |
+
in_channels,
|
190 |
+
out_channels,
|
191 |
+
kernel_size,
|
192 |
+
stride=1,
|
193 |
+
padding=0,
|
194 |
+
dilation=1,
|
195 |
+
groups=1,
|
196 |
+
deformable_groups=1,
|
197 |
+
bias=False):
|
198 |
+
super(DeformConv, self).__init__()
|
199 |
+
|
200 |
+
assert not bias
|
201 |
+
assert in_channels % groups == 0, \
|
202 |
+
f'in_channels {in_channels} is not divisible by groups {groups}'
|
203 |
+
assert out_channels % groups == 0, \
|
204 |
+
f'out_channels {out_channels} is not divisible ' \
|
205 |
+
f'by groups {groups}'
|
206 |
+
|
207 |
+
self.in_channels = in_channels
|
208 |
+
self.out_channels = out_channels
|
209 |
+
self.kernel_size = _pair(kernel_size)
|
210 |
+
self.stride = _pair(stride)
|
211 |
+
self.padding = _pair(padding)
|
212 |
+
self.dilation = _pair(dilation)
|
213 |
+
self.groups = groups
|
214 |
+
self.deformable_groups = deformable_groups
|
215 |
+
# enable compatibility with nn.Conv2d
|
216 |
+
self.transposed = False
|
217 |
+
self.output_padding = _single(0)
|
218 |
+
|
219 |
+
self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels // self.groups, *self.kernel_size))
|
220 |
+
|
221 |
+
self.reset_parameters()
|
222 |
+
|
223 |
+
def reset_parameters(self):
|
224 |
+
n = self.in_channels
|
225 |
+
for k in self.kernel_size:
|
226 |
+
n *= k
|
227 |
+
stdv = 1. / math.sqrt(n)
|
228 |
+
self.weight.data.uniform_(-stdv, stdv)
|
229 |
+
|
230 |
+
def forward(self, x, offset):
|
231 |
+
# To fix an assert error in deform_conv_cuda.cpp:128
|
232 |
+
# input image is smaller than kernel
|
233 |
+
input_pad = (x.size(2) < self.kernel_size[0] or x.size(3) < self.kernel_size[1])
|
234 |
+
if input_pad:
|
235 |
+
pad_h = max(self.kernel_size[0] - x.size(2), 0)
|
236 |
+
pad_w = max(self.kernel_size[1] - x.size(3), 0)
|
237 |
+
x = F.pad(x, (0, pad_w, 0, pad_h), 'constant', 0).contiguous()
|
238 |
+
offset = F.pad(offset, (0, pad_w, 0, pad_h), 'constant', 0).contiguous()
|
239 |
+
out = deform_conv(x, offset, self.weight, self.stride, self.padding, self.dilation, self.groups,
|
240 |
+
self.deformable_groups)
|
241 |
+
if input_pad:
|
242 |
+
out = out[:, :, :out.size(2) - pad_h, :out.size(3) - pad_w].contiguous()
|
243 |
+
return out
|
244 |
+
|
245 |
+
|
246 |
+
class DeformConvPack(DeformConv):
|
247 |
+
"""A Deformable Conv Encapsulation that acts as normal Conv layers.
|
248 |
+
|
249 |
+
Args:
|
250 |
+
in_channels (int): Same as nn.Conv2d.
|
251 |
+
out_channels (int): Same as nn.Conv2d.
|
252 |
+
kernel_size (int or tuple[int]): Same as nn.Conv2d.
|
253 |
+
stride (int or tuple[int]): Same as nn.Conv2d.
|
254 |
+
padding (int or tuple[int]): Same as nn.Conv2d.
|
255 |
+
dilation (int or tuple[int]): Same as nn.Conv2d.
|
256 |
+
groups (int): Same as nn.Conv2d.
|
257 |
+
bias (bool or str): If specified as `auto`, it will be decided by the
|
258 |
+
norm_cfg. Bias will be set as True if norm_cfg is None, otherwise
|
259 |
+
False.
|
260 |
+
"""
|
261 |
+
|
262 |
+
_version = 2
|
263 |
+
|
264 |
+
def __init__(self, *args, **kwargs):
|
265 |
+
super(DeformConvPack, self).__init__(*args, **kwargs)
|
266 |
+
|
267 |
+
self.conv_offset = nn.Conv2d(
|
268 |
+
self.in_channels,
|
269 |
+
self.deformable_groups * 2 * self.kernel_size[0] * self.kernel_size[1],
|
270 |
+
kernel_size=self.kernel_size,
|
271 |
+
stride=_pair(self.stride),
|
272 |
+
padding=_pair(self.padding),
|
273 |
+
dilation=_pair(self.dilation),
|
274 |
+
bias=True)
|
275 |
+
self.init_offset()
|
276 |
+
|
277 |
+
def init_offset(self):
|
278 |
+
self.conv_offset.weight.data.zero_()
|
279 |
+
self.conv_offset.bias.data.zero_()
|
280 |
+
|
281 |
+
def forward(self, x):
|
282 |
+
offset = self.conv_offset(x)
|
283 |
+
return deform_conv(x, offset, self.weight, self.stride, self.padding, self.dilation, self.groups,
|
284 |
+
self.deformable_groups)
|
285 |
+
|
286 |
+
|
287 |
+
class ModulatedDeformConv(nn.Module):
|
288 |
+
|
289 |
+
def __init__(self,
|
290 |
+
in_channels,
|
291 |
+
out_channels,
|
292 |
+
kernel_size,
|
293 |
+
stride=1,
|
294 |
+
padding=0,
|
295 |
+
dilation=1,
|
296 |
+
groups=1,
|
297 |
+
deformable_groups=1,
|
298 |
+
bias=True):
|
299 |
+
super(ModulatedDeformConv, self).__init__()
|
300 |
+
self.in_channels = in_channels
|
301 |
+
self.out_channels = out_channels
|
302 |
+
self.kernel_size = _pair(kernel_size)
|
303 |
+
self.stride = stride
|
304 |
+
self.padding = padding
|
305 |
+
self.dilation = dilation
|
306 |
+
self.groups = groups
|
307 |
+
self.deformable_groups = deformable_groups
|
308 |
+
self.with_bias = bias
|
309 |
+
# enable compatibility with nn.Conv2d
|
310 |
+
self.transposed = False
|
311 |
+
self.output_padding = _single(0)
|
312 |
+
|
313 |
+
self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels // groups, *self.kernel_size))
|
314 |
+
if bias:
|
315 |
+
self.bias = nn.Parameter(torch.Tensor(out_channels))
|
316 |
+
else:
|
317 |
+
self.register_parameter('bias', None)
|
318 |
+
self.init_weights()
|
319 |
+
|
320 |
+
def init_weights(self):
|
321 |
+
n = self.in_channels
|
322 |
+
for k in self.kernel_size:
|
323 |
+
n *= k
|
324 |
+
stdv = 1. / math.sqrt(n)
|
325 |
+
self.weight.data.uniform_(-stdv, stdv)
|
326 |
+
if self.bias is not None:
|
327 |
+
self.bias.data.zero_()
|
328 |
+
|
329 |
+
def forward(self, x, offset, mask):
|
330 |
+
return modulated_deform_conv(x, offset, mask, self.weight, self.bias, self.stride, self.padding, self.dilation,
|
331 |
+
self.groups, self.deformable_groups)
|
332 |
+
|
333 |
+
|
334 |
+
class ModulatedDeformConvPack(ModulatedDeformConv):
|
335 |
+
"""A ModulatedDeformable Conv Encapsulation that acts as normal Conv layers.
|
336 |
+
|
337 |
+
Args:
|
338 |
+
in_channels (int): Same as nn.Conv2d.
|
339 |
+
out_channels (int): Same as nn.Conv2d.
|
340 |
+
kernel_size (int or tuple[int]): Same as nn.Conv2d.
|
341 |
+
stride (int or tuple[int]): Same as nn.Conv2d.
|
342 |
+
padding (int or tuple[int]): Same as nn.Conv2d.
|
343 |
+
dilation (int or tuple[int]): Same as nn.Conv2d.
|
344 |
+
groups (int): Same as nn.Conv2d.
|
345 |
+
bias (bool or str): If specified as `auto`, it will be decided by the
|
346 |
+
norm_cfg. Bias will be set as True if norm_cfg is None, otherwise
|
347 |
+
False.
|
348 |
+
"""
|
349 |
+
|
350 |
+
_version = 2
|
351 |
+
|
352 |
+
def __init__(self, *args, **kwargs):
|
353 |
+
super(ModulatedDeformConvPack, self).__init__(*args, **kwargs)
|
354 |
+
|
355 |
+
self.conv_offset = nn.Conv2d(
|
356 |
+
self.in_channels,
|
357 |
+
self.deformable_groups * 3 * self.kernel_size[0] * self.kernel_size[1],
|
358 |
+
kernel_size=self.kernel_size,
|
359 |
+
stride=_pair(self.stride),
|
360 |
+
padding=_pair(self.padding),
|
361 |
+
dilation=_pair(self.dilation),
|
362 |
+
bias=True)
|
363 |
+
self.init_weights()
|
364 |
+
|
365 |
+
def init_weights(self):
|
366 |
+
super(ModulatedDeformConvPack, self).init_weights()
|
367 |
+
if hasattr(self, 'conv_offset'):
|
368 |
+
self.conv_offset.weight.data.zero_()
|
369 |
+
self.conv_offset.bias.data.zero_()
|
370 |
+
|
371 |
+
def forward(self, x):
|
372 |
+
out = self.conv_offset(x)
|
373 |
+
o1, o2, mask = torch.chunk(out, 3, dim=1)
|
374 |
+
offset = torch.cat((o1, o2), dim=1)
|
375 |
+
mask = torch.sigmoid(mask)
|
376 |
+
return modulated_deform_conv(x, offset, mask, self.weight, self.bias, self.stride, self.padding, self.dilation,
|
377 |
+
self.groups, self.deformable_groups)
|
CodeFormer/basicsr/ops/dcn/src/deform_conv_cuda.cpp
ADDED
@@ -0,0 +1,685 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// modify from
|
2 |
+
// https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/blob/mmdetection/mmdet/ops/dcn/src/deform_conv_cuda.c
|
3 |
+
|
4 |
+
#include <torch/extension.h>
|
5 |
+
#include <ATen/DeviceGuard.h>
|
6 |
+
|
7 |
+
#include <cmath>
|
8 |
+
#include <vector>
|
9 |
+
|
10 |
+
void deformable_im2col(const at::Tensor data_im, const at::Tensor data_offset,
|
11 |
+
const int channels, const int height, const int width,
|
12 |
+
const int ksize_h, const int ksize_w, const int pad_h,
|
13 |
+
const int pad_w, const int stride_h, const int stride_w,
|
14 |
+
const int dilation_h, const int dilation_w,
|
15 |
+
const int parallel_imgs, const int deformable_group,
|
16 |
+
at::Tensor data_col);
|
17 |
+
|
18 |
+
void deformable_col2im(const at::Tensor data_col, const at::Tensor data_offset,
|
19 |
+
const int channels, const int height, const int width,
|
20 |
+
const int ksize_h, const int ksize_w, const int pad_h,
|
21 |
+
const int pad_w, const int stride_h, const int stride_w,
|
22 |
+
const int dilation_h, const int dilation_w,
|
23 |
+
const int parallel_imgs, const int deformable_group,
|
24 |
+
at::Tensor grad_im);
|
25 |
+
|
26 |
+
void deformable_col2im_coord(
|
27 |
+
const at::Tensor data_col, const at::Tensor data_im,
|
28 |
+
const at::Tensor data_offset, const int channels, const int height,
|
29 |
+
const int width, const int ksize_h, const int ksize_w, const int pad_h,
|
30 |
+
const int pad_w, const int stride_h, const int stride_w,
|
31 |
+
const int dilation_h, const int dilation_w, const int parallel_imgs,
|
32 |
+
const int deformable_group, at::Tensor grad_offset);
|
33 |
+
|
34 |
+
void modulated_deformable_im2col_cuda(
|
35 |
+
const at::Tensor data_im, const at::Tensor data_offset,
|
36 |
+
const at::Tensor data_mask, const int batch_size, const int channels,
|
37 |
+
const int height_im, const int width_im, const int height_col,
|
38 |
+
const int width_col, const int kernel_h, const int kenerl_w,
|
39 |
+
const int pad_h, const int pad_w, const int stride_h, const int stride_w,
|
40 |
+
const int dilation_h, const int dilation_w, const int deformable_group,
|
41 |
+
at::Tensor data_col);
|
42 |
+
|
43 |
+
void modulated_deformable_col2im_cuda(
|
44 |
+
const at::Tensor data_col, const at::Tensor data_offset,
|
45 |
+
const at::Tensor data_mask, const int batch_size, const int channels,
|
46 |
+
const int height_im, const int width_im, const int height_col,
|
47 |
+
const int width_col, const int kernel_h, const int kenerl_w,
|
48 |
+
const int pad_h, const int pad_w, const int stride_h, const int stride_w,
|
49 |
+
const int dilation_h, const int dilation_w, const int deformable_group,
|
50 |
+
at::Tensor grad_im);
|
51 |
+
|
52 |
+
void modulated_deformable_col2im_coord_cuda(
|
53 |
+
const at::Tensor data_col, const at::Tensor data_im,
|
54 |
+
const at::Tensor data_offset, const at::Tensor data_mask,
|
55 |
+
const int batch_size, const int channels, const int height_im,
|
56 |
+
const int width_im, const int height_col, const int width_col,
|
57 |
+
const int kernel_h, const int kenerl_w, const int pad_h, const int pad_w,
|
58 |
+
const int stride_h, const int stride_w, const int dilation_h,
|
59 |
+
const int dilation_w, const int deformable_group, at::Tensor grad_offset,
|
60 |
+
at::Tensor grad_mask);
|
61 |
+
|
62 |
+
void shape_check(at::Tensor input, at::Tensor offset, at::Tensor *gradOutput,
|
63 |
+
at::Tensor weight, int kH, int kW, int dH, int dW, int padH,
|
64 |
+
int padW, int dilationH, int dilationW, int group,
|
65 |
+
int deformable_group) {
|
66 |
+
TORCH_CHECK(weight.ndimension() == 4,
|
67 |
+
"4D weight tensor (nOutputPlane,nInputPlane,kH,kW) expected, "
|
68 |
+
"but got: %s",
|
69 |
+
weight.ndimension());
|
70 |
+
|
71 |
+
TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous");
|
72 |
+
|
73 |
+
TORCH_CHECK(kW > 0 && kH > 0,
|
74 |
+
"kernel size should be greater than zero, but got kH: %d kW: %d", kH,
|
75 |
+
kW);
|
76 |
+
|
77 |
+
TORCH_CHECK((weight.size(2) == kH && weight.size(3) == kW),
|
78 |
+
"kernel size should be consistent with weight, ",
|
79 |
+
"but got kH: %d kW: %d weight.size(2): %d, weight.size(3): %d", kH,
|
80 |
+
kW, weight.size(2), weight.size(3));
|
81 |
+
|
82 |
+
TORCH_CHECK(dW > 0 && dH > 0,
|
83 |
+
"stride should be greater than zero, but got dH: %d dW: %d", dH, dW);
|
84 |
+
|
85 |
+
TORCH_CHECK(
|
86 |
+
dilationW > 0 && dilationH > 0,
|
87 |
+
"dilation should be greater than 0, but got dilationH: %d dilationW: %d",
|
88 |
+
dilationH, dilationW);
|
89 |
+
|
90 |
+
int ndim = input.ndimension();
|
91 |
+
int dimf = 0;
|
92 |
+
int dimh = 1;
|
93 |
+
int dimw = 2;
|
94 |
+
|
95 |
+
if (ndim == 4) {
|
96 |
+
dimf++;
|
97 |
+
dimh++;
|
98 |
+
dimw++;
|
99 |
+
}
|
100 |
+
|
101 |
+
TORCH_CHECK(ndim == 3 || ndim == 4, "3D or 4D input tensor expected but got: %s",
|
102 |
+
ndim);
|
103 |
+
|
104 |
+
long nInputPlane = weight.size(1) * group;
|
105 |
+
long inputHeight = input.size(dimh);
|
106 |
+
long inputWidth = input.size(dimw);
|
107 |
+
long nOutputPlane = weight.size(0);
|
108 |
+
long outputHeight =
|
109 |
+
(inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;
|
110 |
+
long outputWidth =
|
111 |
+
(inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
|
112 |
+
|
113 |
+
TORCH_CHECK(nInputPlane % deformable_group == 0,
|
114 |
+
"input channels must divide deformable group size");
|
115 |
+
|
116 |
+
if (outputWidth < 1 || outputHeight < 1)
|
117 |
+
AT_ERROR(
|
118 |
+
"Given input size: (%ld x %ld x %ld). "
|
119 |
+
"Calculated output size: (%ld x %ld x %ld). Output size is too small",
|
120 |
+
nInputPlane, inputHeight, inputWidth, nOutputPlane, outputHeight,
|
121 |
+
outputWidth);
|
122 |
+
|
123 |
+
TORCH_CHECK(input.size(1) == nInputPlane,
|
124 |
+
"invalid number of input planes, expected: %d, but got: %d",
|
125 |
+
nInputPlane, input.size(1));
|
126 |
+
|
127 |
+
TORCH_CHECK((inputHeight >= kH && inputWidth >= kW),
|
128 |
+
"input image is smaller than kernel");
|
129 |
+
|
130 |
+
TORCH_CHECK((offset.size(2) == outputHeight && offset.size(3) == outputWidth),
|
131 |
+
"invalid spatial size of offset, expected height: %d width: %d, but "
|
132 |
+
"got height: %d width: %d",
|
133 |
+
outputHeight, outputWidth, offset.size(2), offset.size(3));
|
134 |
+
|
135 |
+
TORCH_CHECK((offset.size(1) == deformable_group * 2 * kH * kW),
|
136 |
+
"invalid number of channels of offset");
|
137 |
+
|
138 |
+
if (gradOutput != NULL) {
|
139 |
+
TORCH_CHECK(gradOutput->size(dimf) == nOutputPlane,
|
140 |
+
"invalid number of gradOutput planes, expected: %d, but got: %d",
|
141 |
+
nOutputPlane, gradOutput->size(dimf));
|
142 |
+
|
143 |
+
TORCH_CHECK((gradOutput->size(dimh) == outputHeight &&
|
144 |
+
gradOutput->size(dimw) == outputWidth),
|
145 |
+
"invalid size of gradOutput, expected height: %d width: %d , but "
|
146 |
+
"got height: %d width: %d",
|
147 |
+
outputHeight, outputWidth, gradOutput->size(dimh),
|
148 |
+
gradOutput->size(dimw));
|
149 |
+
}
|
150 |
+
}
|
151 |
+
|
152 |
+
int deform_conv_forward_cuda(at::Tensor input, at::Tensor weight,
|
153 |
+
at::Tensor offset, at::Tensor output,
|
154 |
+
at::Tensor columns, at::Tensor ones, int kW,
|
155 |
+
int kH, int dW, int dH, int padW, int padH,
|
156 |
+
int dilationW, int dilationH, int group,
|
157 |
+
int deformable_group, int im2col_step) {
|
158 |
+
// todo: resize columns to include im2col: done
|
159 |
+
// todo: add im2col_step as input
|
160 |
+
// todo: add new output buffer and transpose it to output (or directly
|
161 |
+
// transpose output) todo: possibly change data indexing because of
|
162 |
+
// parallel_imgs
|
163 |
+
|
164 |
+
shape_check(input, offset, NULL, weight, kH, kW, dH, dW, padH, padW,
|
165 |
+
dilationH, dilationW, group, deformable_group);
|
166 |
+
at::DeviceGuard guard(input.device());
|
167 |
+
|
168 |
+
input = input.contiguous();
|
169 |
+
offset = offset.contiguous();
|
170 |
+
weight = weight.contiguous();
|
171 |
+
|
172 |
+
int batch = 1;
|
173 |
+
if (input.ndimension() == 3) {
|
174 |
+
// Force batch
|
175 |
+
batch = 0;
|
176 |
+
input.unsqueeze_(0);
|
177 |
+
offset.unsqueeze_(0);
|
178 |
+
}
|
179 |
+
|
180 |
+
// todo: assert batchsize dividable by im2col_step
|
181 |
+
|
182 |
+
long batchSize = input.size(0);
|
183 |
+
long nInputPlane = input.size(1);
|
184 |
+
long inputHeight = input.size(2);
|
185 |
+
long inputWidth = input.size(3);
|
186 |
+
|
187 |
+
long nOutputPlane = weight.size(0);
|
188 |
+
|
189 |
+
long outputWidth =
|
190 |
+
(inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
|
191 |
+
long outputHeight =
|
192 |
+
(inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;
|
193 |
+
|
194 |
+
TORCH_CHECK((offset.size(0) == batchSize), "invalid batch size of offset");
|
195 |
+
|
196 |
+
output = output.view({batchSize / im2col_step, im2col_step, nOutputPlane,
|
197 |
+
outputHeight, outputWidth});
|
198 |
+
columns = at::zeros(
|
199 |
+
{nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth},
|
200 |
+
input.options());
|
201 |
+
|
202 |
+
if (ones.ndimension() != 2 ||
|
203 |
+
ones.size(0) * ones.size(1) < outputHeight * outputWidth) {
|
204 |
+
ones = at::ones({outputHeight, outputWidth}, input.options());
|
205 |
+
}
|
206 |
+
|
207 |
+
input = input.view({batchSize / im2col_step, im2col_step, nInputPlane,
|
208 |
+
inputHeight, inputWidth});
|
209 |
+
offset =
|
210 |
+
offset.view({batchSize / im2col_step, im2col_step,
|
211 |
+
deformable_group * 2 * kH * kW, outputHeight, outputWidth});
|
212 |
+
|
213 |
+
at::Tensor output_buffer =
|
214 |
+
at::zeros({batchSize / im2col_step, nOutputPlane,
|
215 |
+
im2col_step * outputHeight, outputWidth},
|
216 |
+
output.options());
|
217 |
+
|
218 |
+
output_buffer = output_buffer.view(
|
219 |
+
{output_buffer.size(0), group, output_buffer.size(1) / group,
|
220 |
+
output_buffer.size(2), output_buffer.size(3)});
|
221 |
+
|
222 |
+
for (int elt = 0; elt < batchSize / im2col_step; elt++) {
|
223 |
+
deformable_im2col(input[elt], offset[elt], nInputPlane, inputHeight,
|
224 |
+
inputWidth, kH, kW, padH, padW, dH, dW, dilationH,
|
225 |
+
dilationW, im2col_step, deformable_group, columns);
|
226 |
+
|
227 |
+
columns = columns.view({group, columns.size(0) / group, columns.size(1)});
|
228 |
+
weight = weight.view({group, weight.size(0) / group, weight.size(1),
|
229 |
+
weight.size(2), weight.size(3)});
|
230 |
+
|
231 |
+
for (int g = 0; g < group; g++) {
|
232 |
+
output_buffer[elt][g] = output_buffer[elt][g]
|
233 |
+
.flatten(1)
|
234 |
+
.addmm_(weight[g].flatten(1), columns[g])
|
235 |
+
.view_as(output_buffer[elt][g]);
|
236 |
+
}
|
237 |
+
}
|
238 |
+
|
239 |
+
output_buffer = output_buffer.view(
|
240 |
+
{output_buffer.size(0), output_buffer.size(1) * output_buffer.size(2),
|
241 |
+
output_buffer.size(3), output_buffer.size(4)});
|
242 |
+
|
243 |
+
output_buffer = output_buffer.view({batchSize / im2col_step, nOutputPlane,
|
244 |
+
im2col_step, outputHeight, outputWidth});
|
245 |
+
output_buffer.transpose_(1, 2);
|
246 |
+
output.copy_(output_buffer);
|
247 |
+
output = output.view({batchSize, nOutputPlane, outputHeight, outputWidth});
|
248 |
+
|
249 |
+
input = input.view({batchSize, nInputPlane, inputHeight, inputWidth});
|
250 |
+
offset = offset.view(
|
251 |
+
{batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});
|
252 |
+
|
253 |
+
if (batch == 0) {
|
254 |
+
output = output.view({nOutputPlane, outputHeight, outputWidth});
|
255 |
+
input = input.view({nInputPlane, inputHeight, inputWidth});
|
256 |
+
offset = offset.view({offset.size(1), offset.size(2), offset.size(3)});
|
257 |
+
}
|
258 |
+
|
259 |
+
return 1;
|
260 |
+
}
|
261 |
+
|
262 |
+
int deform_conv_backward_input_cuda(at::Tensor input, at::Tensor offset,
|
263 |
+
at::Tensor gradOutput, at::Tensor gradInput,
|
264 |
+
at::Tensor gradOffset, at::Tensor weight,
|
265 |
+
at::Tensor columns, int kW, int kH, int dW,
|
266 |
+
int dH, int padW, int padH, int dilationW,
|
267 |
+
int dilationH, int group,
|
268 |
+
int deformable_group, int im2col_step) {
|
269 |
+
shape_check(input, offset, &gradOutput, weight, kH, kW, dH, dW, padH, padW,
|
270 |
+
dilationH, dilationW, group, deformable_group);
|
271 |
+
at::DeviceGuard guard(input.device());
|
272 |
+
|
273 |
+
input = input.contiguous();
|
274 |
+
offset = offset.contiguous();
|
275 |
+
gradOutput = gradOutput.contiguous();
|
276 |
+
weight = weight.contiguous();
|
277 |
+
|
278 |
+
int batch = 1;
|
279 |
+
|
280 |
+
if (input.ndimension() == 3) {
|
281 |
+
// Force batch
|
282 |
+
batch = 0;
|
283 |
+
input = input.view({1, input.size(0), input.size(1), input.size(2)});
|
284 |
+
offset = offset.view({1, offset.size(0), offset.size(1), offset.size(2)});
|
285 |
+
gradOutput = gradOutput.view(
|
286 |
+
{1, gradOutput.size(0), gradOutput.size(1), gradOutput.size(2)});
|
287 |
+
}
|
288 |
+
|
289 |
+
long batchSize = input.size(0);
|
290 |
+
long nInputPlane = input.size(1);
|
291 |
+
long inputHeight = input.size(2);
|
292 |
+
long inputWidth = input.size(3);
|
293 |
+
|
294 |
+
long nOutputPlane = weight.size(0);
|
295 |
+
|
296 |
+
long outputWidth =
|
297 |
+
(inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
|
298 |
+
long outputHeight =
|
299 |
+
(inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;
|
300 |
+
|
301 |
+
TORCH_CHECK((offset.size(0) == batchSize), 3, "invalid batch size of offset");
|
302 |
+
gradInput = gradInput.view({batchSize, nInputPlane, inputHeight, inputWidth});
|
303 |
+
columns = at::zeros(
|
304 |
+
{nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth},
|
305 |
+
input.options());
|
306 |
+
|
307 |
+
// change order of grad output
|
308 |
+
gradOutput = gradOutput.view({batchSize / im2col_step, im2col_step,
|
309 |
+
nOutputPlane, outputHeight, outputWidth});
|
310 |
+
gradOutput.transpose_(1, 2);
|
311 |
+
|
312 |
+
gradInput = gradInput.view({batchSize / im2col_step, im2col_step, nInputPlane,
|
313 |
+
inputHeight, inputWidth});
|
314 |
+
input = input.view({batchSize / im2col_step, im2col_step, nInputPlane,
|
315 |
+
inputHeight, inputWidth});
|
316 |
+
gradOffset = gradOffset.view({batchSize / im2col_step, im2col_step,
|
317 |
+
deformable_group * 2 * kH * kW, outputHeight,
|
318 |
+
outputWidth});
|
319 |
+
offset =
|
320 |
+
offset.view({batchSize / im2col_step, im2col_step,
|
321 |
+
deformable_group * 2 * kH * kW, outputHeight, outputWidth});
|
322 |
+
|
323 |
+
for (int elt = 0; elt < batchSize / im2col_step; elt++) {
|
324 |
+
// divide into groups
|
325 |
+
columns = columns.view({group, columns.size(0) / group, columns.size(1)});
|
326 |
+
weight = weight.view({group, weight.size(0) / group, weight.size(1),
|
327 |
+
weight.size(2), weight.size(3)});
|
328 |
+
gradOutput = gradOutput.view(
|
329 |
+
{gradOutput.size(0), group, gradOutput.size(1) / group,
|
330 |
+
gradOutput.size(2), gradOutput.size(3), gradOutput.size(4)});
|
331 |
+
|
332 |
+
for (int g = 0; g < group; g++) {
|
333 |
+
columns[g] = columns[g].addmm_(weight[g].flatten(1).transpose(0, 1),
|
334 |
+
gradOutput[elt][g].flatten(1), 0.0f, 1.0f);
|
335 |
+
}
|
336 |
+
|
337 |
+
columns =
|
338 |
+
columns.view({columns.size(0) * columns.size(1), columns.size(2)});
|
339 |
+
gradOutput = gradOutput.view(
|
340 |
+
{gradOutput.size(0), gradOutput.size(1) * gradOutput.size(2),
|
341 |
+
gradOutput.size(3), gradOutput.size(4), gradOutput.size(5)});
|
342 |
+
|
343 |
+
deformable_col2im_coord(columns, input[elt], offset[elt], nInputPlane,
|
344 |
+
inputHeight, inputWidth, kH, kW, padH, padW, dH, dW,
|
345 |
+
dilationH, dilationW, im2col_step, deformable_group,
|
346 |
+
gradOffset[elt]);
|
347 |
+
|
348 |
+
deformable_col2im(columns, offset[elt], nInputPlane, inputHeight,
|
349 |
+
inputWidth, kH, kW, padH, padW, dH, dW, dilationH,
|
350 |
+
dilationW, im2col_step, deformable_group, gradInput[elt]);
|
351 |
+
}
|
352 |
+
|
353 |
+
gradOutput.transpose_(1, 2);
|
354 |
+
gradOutput =
|
355 |
+
gradOutput.view({batchSize, nOutputPlane, outputHeight, outputWidth});
|
356 |
+
|
357 |
+
gradInput = gradInput.view({batchSize, nInputPlane, inputHeight, inputWidth});
|
358 |
+
input = input.view({batchSize, nInputPlane, inputHeight, inputWidth});
|
359 |
+
gradOffset = gradOffset.view(
|
360 |
+
{batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});
|
361 |
+
offset = offset.view(
|
362 |
+
{batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});
|
363 |
+
|
364 |
+
if (batch == 0) {
|
365 |
+
gradOutput = gradOutput.view({nOutputPlane, outputHeight, outputWidth});
|
366 |
+
input = input.view({nInputPlane, inputHeight, inputWidth});
|
367 |
+
gradInput = gradInput.view({nInputPlane, inputHeight, inputWidth});
|
368 |
+
offset = offset.view({offset.size(1), offset.size(2), offset.size(3)});
|
369 |
+
gradOffset =
|
370 |
+
gradOffset.view({offset.size(1), offset.size(2), offset.size(3)});
|
371 |
+
}
|
372 |
+
|
373 |
+
return 1;
|
374 |
+
}
|
375 |
+
|
376 |
+
int deform_conv_backward_parameters_cuda(
|
377 |
+
at::Tensor input, at::Tensor offset, at::Tensor gradOutput,
|
378 |
+
at::Tensor gradWeight, // at::Tensor gradBias,
|
379 |
+
at::Tensor columns, at::Tensor ones, int kW, int kH, int dW, int dH,
|
380 |
+
int padW, int padH, int dilationW, int dilationH, int group,
|
381 |
+
int deformable_group, float scale, int im2col_step) {
|
382 |
+
// todo: transpose and reshape outGrad
|
383 |
+
// todo: reshape columns
|
384 |
+
// todo: add im2col_step as input
|
385 |
+
|
386 |
+
shape_check(input, offset, &gradOutput, gradWeight, kH, kW, dH, dW, padH,
|
387 |
+
padW, dilationH, dilationW, group, deformable_group);
|
388 |
+
at::DeviceGuard guard(input.device());
|
389 |
+
|
390 |
+
input = input.contiguous();
|
391 |
+
offset = offset.contiguous();
|
392 |
+
gradOutput = gradOutput.contiguous();
|
393 |
+
|
394 |
+
int batch = 1;
|
395 |
+
|
396 |
+
if (input.ndimension() == 3) {
|
397 |
+
// Force batch
|
398 |
+
batch = 0;
|
399 |
+
input = input.view(
|
400 |
+
at::IntList({1, input.size(0), input.size(1), input.size(2)}));
|
401 |
+
gradOutput = gradOutput.view(
|
402 |
+
{1, gradOutput.size(0), gradOutput.size(1), gradOutput.size(2)});
|
403 |
+
}
|
404 |
+
|
405 |
+
long batchSize = input.size(0);
|
406 |
+
long nInputPlane = input.size(1);
|
407 |
+
long inputHeight = input.size(2);
|
408 |
+
long inputWidth = input.size(3);
|
409 |
+
|
410 |
+
long nOutputPlane = gradWeight.size(0);
|
411 |
+
|
412 |
+
long outputWidth =
|
413 |
+
(inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
|
414 |
+
long outputHeight =
|
415 |
+
(inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;
|
416 |
+
|
417 |
+
TORCH_CHECK((offset.size(0) == batchSize), "invalid batch size of offset");
|
418 |
+
|
419 |
+
columns = at::zeros(
|
420 |
+
{nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth},
|
421 |
+
input.options());
|
422 |
+
|
423 |
+
gradOutput = gradOutput.view({batchSize / im2col_step, im2col_step,
|
424 |
+
nOutputPlane, outputHeight, outputWidth});
|
425 |
+
gradOutput.transpose_(1, 2);
|
426 |
+
|
427 |
+
at::Tensor gradOutputBuffer = at::zeros_like(gradOutput);
|
428 |
+
gradOutputBuffer =
|
429 |
+
gradOutputBuffer.view({batchSize / im2col_step, nOutputPlane, im2col_step,
|
430 |
+
outputHeight, outputWidth});
|
431 |
+
gradOutputBuffer.copy_(gradOutput);
|
432 |
+
gradOutputBuffer =
|
433 |
+
gradOutputBuffer.view({batchSize / im2col_step, nOutputPlane,
|
434 |
+
im2col_step * outputHeight, outputWidth});
|
435 |
+
|
436 |
+
gradOutput.transpose_(1, 2);
|
437 |
+
gradOutput =
|
438 |
+
gradOutput.view({batchSize, nOutputPlane, outputHeight, outputWidth});
|
439 |
+
|
440 |
+
input = input.view({batchSize / im2col_step, im2col_step, nInputPlane,
|
441 |
+
inputHeight, inputWidth});
|
442 |
+
offset =
|
443 |
+
offset.view({batchSize / im2col_step, im2col_step,
|
444 |
+
deformable_group * 2 * kH * kW, outputHeight, outputWidth});
|
445 |
+
|
446 |
+
for (int elt = 0; elt < batchSize / im2col_step; elt++) {
|
447 |
+
deformable_im2col(input[elt], offset[elt], nInputPlane, inputHeight,
|
448 |
+
inputWidth, kH, kW, padH, padW, dH, dW, dilationH,
|
449 |
+
dilationW, im2col_step, deformable_group, columns);
|
450 |
+
|
451 |
+
// divide into group
|
452 |
+
gradOutputBuffer = gradOutputBuffer.view(
|
453 |
+
{gradOutputBuffer.size(0), group, gradOutputBuffer.size(1) / group,
|
454 |
+
gradOutputBuffer.size(2), gradOutputBuffer.size(3)});
|
455 |
+
columns = columns.view({group, columns.size(0) / group, columns.size(1)});
|
456 |
+
gradWeight =
|
457 |
+
gradWeight.view({group, gradWeight.size(0) / group, gradWeight.size(1),
|
458 |
+
gradWeight.size(2), gradWeight.size(3)});
|
459 |
+
|
460 |
+
for (int g = 0; g < group; g++) {
|
461 |
+
gradWeight[g] = gradWeight[g]
|
462 |
+
.flatten(1)
|
463 |
+
.addmm_(gradOutputBuffer[elt][g].flatten(1),
|
464 |
+
columns[g].transpose(1, 0), 1.0, scale)
|
465 |
+
.view_as(gradWeight[g]);
|
466 |
+
}
|
467 |
+
gradOutputBuffer = gradOutputBuffer.view(
|
468 |
+
{gradOutputBuffer.size(0),
|
469 |
+
gradOutputBuffer.size(1) * gradOutputBuffer.size(2),
|
470 |
+
gradOutputBuffer.size(3), gradOutputBuffer.size(4)});
|
471 |
+
columns =
|
472 |
+
columns.view({columns.size(0) * columns.size(1), columns.size(2)});
|
473 |
+
gradWeight = gradWeight.view({gradWeight.size(0) * gradWeight.size(1),
|
474 |
+
gradWeight.size(2), gradWeight.size(3),
|
475 |
+
gradWeight.size(4)});
|
476 |
+
}
|
477 |
+
|
478 |
+
input = input.view({batchSize, nInputPlane, inputHeight, inputWidth});
|
479 |
+
offset = offset.view(
|
480 |
+
{batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});
|
481 |
+
|
482 |
+
if (batch == 0) {
|
483 |
+
gradOutput = gradOutput.view({nOutputPlane, outputHeight, outputWidth});
|
484 |
+
input = input.view({nInputPlane, inputHeight, inputWidth});
|
485 |
+
}
|
486 |
+
|
487 |
+
return 1;
|
488 |
+
}
|
489 |
+
|
490 |
+
void modulated_deform_conv_cuda_forward(
|
491 |
+
at::Tensor input, at::Tensor weight, at::Tensor bias, at::Tensor ones,
|
492 |
+
at::Tensor offset, at::Tensor mask, at::Tensor output, at::Tensor columns,
|
493 |
+
int kernel_h, int kernel_w, const int stride_h, const int stride_w,
|
494 |
+
const int pad_h, const int pad_w, const int dilation_h,
|
495 |
+
const int dilation_w, const int group, const int deformable_group,
|
496 |
+
const bool with_bias) {
|
497 |
+
TORCH_CHECK(input.is_contiguous(), "input tensor has to be contiguous");
|
498 |
+
TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous");
|
499 |
+
at::DeviceGuard guard(input.device());
|
500 |
+
|
501 |
+
const int batch = input.size(0);
|
502 |
+
const int channels = input.size(1);
|
503 |
+
const int height = input.size(2);
|
504 |
+
const int width = input.size(3);
|
505 |
+
|
506 |
+
const int channels_out = weight.size(0);
|
507 |
+
const int channels_kernel = weight.size(1);
|
508 |
+
const int kernel_h_ = weight.size(2);
|
509 |
+
const int kernel_w_ = weight.size(3);
|
510 |
+
|
511 |
+
if (kernel_h_ != kernel_h || kernel_w_ != kernel_w)
|
512 |
+
AT_ERROR("Input shape and kernel shape wont match: (%d x %d vs %d x %d).",
|
513 |
+
kernel_h_, kernel_w, kernel_h_, kernel_w_);
|
514 |
+
if (channels != channels_kernel * group)
|
515 |
+
AT_ERROR("Input shape and kernel channels wont match: (%d vs %d).",
|
516 |
+
channels, channels_kernel * group);
|
517 |
+
|
518 |
+
const int height_out =
|
519 |
+
(height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;
|
520 |
+
const int width_out =
|
521 |
+
(width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;
|
522 |
+
|
523 |
+
if (ones.ndimension() != 2 ||
|
524 |
+
ones.size(0) * ones.size(1) < height_out * width_out) {
|
525 |
+
// Resize plane and fill with ones...
|
526 |
+
ones = at::ones({height_out, width_out}, input.options());
|
527 |
+
}
|
528 |
+
|
529 |
+
// resize output
|
530 |
+
output = output.view({batch, channels_out, height_out, width_out}).zero_();
|
531 |
+
// resize temporary columns
|
532 |
+
columns =
|
533 |
+
at::zeros({channels * kernel_h * kernel_w, 1 * height_out * width_out},
|
534 |
+
input.options());
|
535 |
+
|
536 |
+
output = output.view({output.size(0), group, output.size(1) / group,
|
537 |
+
output.size(2), output.size(3)});
|
538 |
+
|
539 |
+
for (int b = 0; b < batch; b++) {
|
540 |
+
modulated_deformable_im2col_cuda(
|
541 |
+
input[b], offset[b], mask[b], 1, channels, height, width, height_out,
|
542 |
+
width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w,
|
543 |
+
dilation_h, dilation_w, deformable_group, columns);
|
544 |
+
|
545 |
+
// divide into group
|
546 |
+
weight = weight.view({group, weight.size(0) / group, weight.size(1),
|
547 |
+
weight.size(2), weight.size(3)});
|
548 |
+
columns = columns.view({group, columns.size(0) / group, columns.size(1)});
|
549 |
+
|
550 |
+
for (int g = 0; g < group; g++) {
|
551 |
+
output[b][g] = output[b][g]
|
552 |
+
.flatten(1)
|
553 |
+
.addmm_(weight[g].flatten(1), columns[g])
|
554 |
+
.view_as(output[b][g]);
|
555 |
+
}
|
556 |
+
|
557 |
+
weight = weight.view({weight.size(0) * weight.size(1), weight.size(2),
|
558 |
+
weight.size(3), weight.size(4)});
|
559 |
+
columns =
|
560 |
+
columns.view({columns.size(0) * columns.size(1), columns.size(2)});
|
561 |
+
}
|
562 |
+
|
563 |
+
output = output.view({output.size(0), output.size(1) * output.size(2),
|
564 |
+
output.size(3), output.size(4)});
|
565 |
+
|
566 |
+
if (with_bias) {
|
567 |
+
output += bias.view({1, bias.size(0), 1, 1});
|
568 |
+
}
|
569 |
+
}
|
570 |
+
|
571 |
+
void modulated_deform_conv_cuda_backward(
|
572 |
+
at::Tensor input, at::Tensor weight, at::Tensor bias, at::Tensor ones,
|
573 |
+
at::Tensor offset, at::Tensor mask, at::Tensor columns,
|
574 |
+
at::Tensor grad_input, at::Tensor grad_weight, at::Tensor grad_bias,
|
575 |
+
at::Tensor grad_offset, at::Tensor grad_mask, at::Tensor grad_output,
|
576 |
+
int kernel_h, int kernel_w, int stride_h, int stride_w, int pad_h,
|
577 |
+
int pad_w, int dilation_h, int dilation_w, int group, int deformable_group,
|
578 |
+
const bool with_bias) {
|
579 |
+
TORCH_CHECK(input.is_contiguous(), "input tensor has to be contiguous");
|
580 |
+
TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous");
|
581 |
+
at::DeviceGuard guard(input.device());
|
582 |
+
|
583 |
+
const int batch = input.size(0);
|
584 |
+
const int channels = input.size(1);
|
585 |
+
const int height = input.size(2);
|
586 |
+
const int width = input.size(3);
|
587 |
+
|
588 |
+
const int channels_kernel = weight.size(1);
|
589 |
+
const int kernel_h_ = weight.size(2);
|
590 |
+
const int kernel_w_ = weight.size(3);
|
591 |
+
if (kernel_h_ != kernel_h || kernel_w_ != kernel_w)
|
592 |
+
AT_ERROR("Input shape and kernel shape wont match: (%d x %d vs %d x %d).",
|
593 |
+
kernel_h_, kernel_w, kernel_h_, kernel_w_);
|
594 |
+
if (channels != channels_kernel * group)
|
595 |
+
AT_ERROR("Input shape and kernel channels wont match: (%d vs %d).",
|
596 |
+
channels, channels_kernel * group);
|
597 |
+
|
598 |
+
const int height_out =
|
599 |
+
(height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;
|
600 |
+
const int width_out =
|
601 |
+
(width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;
|
602 |
+
|
603 |
+
if (ones.ndimension() != 2 ||
|
604 |
+
ones.size(0) * ones.size(1) < height_out * width_out) {
|
605 |
+
// Resize plane and fill with ones...
|
606 |
+
ones = at::ones({height_out, width_out}, input.options());
|
607 |
+
}
|
608 |
+
|
609 |
+
grad_input = grad_input.view({batch, channels, height, width});
|
610 |
+
columns = at::zeros({channels * kernel_h * kernel_w, height_out * width_out},
|
611 |
+
input.options());
|
612 |
+
|
613 |
+
grad_output =
|
614 |
+
grad_output.view({grad_output.size(0), group, grad_output.size(1) / group,
|
615 |
+
grad_output.size(2), grad_output.size(3)});
|
616 |
+
|
617 |
+
for (int b = 0; b < batch; b++) {
|
618 |
+
// divide int group
|
619 |
+
columns = columns.view({group, columns.size(0) / group, columns.size(1)});
|
620 |
+
weight = weight.view({group, weight.size(0) / group, weight.size(1),
|
621 |
+
weight.size(2), weight.size(3)});
|
622 |
+
|
623 |
+
for (int g = 0; g < group; g++) {
|
624 |
+
columns[g].addmm_(weight[g].flatten(1).transpose(0, 1),
|
625 |
+
grad_output[b][g].flatten(1), 0.0f, 1.0f);
|
626 |
+
}
|
627 |
+
|
628 |
+
columns =
|
629 |
+
columns.view({columns.size(0) * columns.size(1), columns.size(2)});
|
630 |
+
weight = weight.view({weight.size(0) * weight.size(1), weight.size(2),
|
631 |
+
weight.size(3), weight.size(4)});
|
632 |
+
|
633 |
+
// gradient w.r.t. input coordinate data
|
634 |
+
modulated_deformable_col2im_coord_cuda(
|
635 |
+
columns, input[b], offset[b], mask[b], 1, channels, height, width,
|
636 |
+
height_out, width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h,
|
637 |
+
stride_w, dilation_h, dilation_w, deformable_group, grad_offset[b],
|
638 |
+
grad_mask[b]);
|
639 |
+
// gradient w.r.t. input data
|
640 |
+
modulated_deformable_col2im_cuda(
|
641 |
+
columns, offset[b], mask[b], 1, channels, height, width, height_out,
|
642 |
+
width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w,
|
643 |
+
dilation_h, dilation_w, deformable_group, grad_input[b]);
|
644 |
+
|
645 |
+
// gradient w.r.t. weight, dWeight should accumulate across the batch and
|
646 |
+
// group
|
647 |
+
modulated_deformable_im2col_cuda(
|
648 |
+
input[b], offset[b], mask[b], 1, channels, height, width, height_out,
|
649 |
+
width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w,
|
650 |
+
dilation_h, dilation_w, deformable_group, columns);
|
651 |
+
|
652 |
+
columns = columns.view({group, columns.size(0) / group, columns.size(1)});
|
653 |
+
grad_weight = grad_weight.view({group, grad_weight.size(0) / group,
|
654 |
+
grad_weight.size(1), grad_weight.size(2),
|
655 |
+
grad_weight.size(3)});
|
656 |
+
if (with_bias)
|
657 |
+
grad_bias = grad_bias.view({group, grad_bias.size(0) / group});
|
658 |
+
|
659 |
+
for (int g = 0; g < group; g++) {
|
660 |
+
grad_weight[g] =
|
661 |
+
grad_weight[g]
|
662 |
+
.flatten(1)
|
663 |
+
.addmm_(grad_output[b][g].flatten(1), columns[g].transpose(0, 1))
|
664 |
+
.view_as(grad_weight[g]);
|
665 |
+
if (with_bias) {
|
666 |
+
grad_bias[g] =
|
667 |
+
grad_bias[g]
|
668 |
+
.view({-1, 1})
|
669 |
+
.addmm_(grad_output[b][g].flatten(1), ones.view({-1, 1}))
|
670 |
+
.view(-1);
|
671 |
+
}
|
672 |
+
}
|
673 |
+
|
674 |
+
columns =
|
675 |
+
columns.view({columns.size(0) * columns.size(1), columns.size(2)});
|
676 |
+
grad_weight = grad_weight.view({grad_weight.size(0) * grad_weight.size(1),
|
677 |
+
grad_weight.size(2), grad_weight.size(3),
|
678 |
+
grad_weight.size(4)});
|
679 |
+
if (with_bias)
|
680 |
+
grad_bias = grad_bias.view({grad_bias.size(0) * grad_bias.size(1)});
|
681 |
+
}
|
682 |
+
grad_output = grad_output.view({grad_output.size(0) * grad_output.size(1),
|
683 |
+
grad_output.size(2), grad_output.size(3),
|
684 |
+
grad_output.size(4)});
|
685 |
+
}
|
CodeFormer/basicsr/ops/dcn/src/deform_conv_cuda_kernel.cu
ADDED
@@ -0,0 +1,867 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*!
|
2 |
+
******************* BEGIN Caffe Copyright Notice and Disclaimer ****************
|
3 |
+
*
|
4 |
+
* COPYRIGHT
|
5 |
+
*
|
6 |
+
* All contributions by the University of California:
|
7 |
+
* Copyright (c) 2014-2017 The Regents of the University of California (Regents)
|
8 |
+
* All rights reserved.
|
9 |
+
*
|
10 |
+
* All other contributions:
|
11 |
+
* Copyright (c) 2014-2017, the respective contributors
|
12 |
+
* All rights reserved.
|
13 |
+
*
|
14 |
+
* Caffe uses a shared copyright model: each contributor holds copyright over
|
15 |
+
* their contributions to Caffe. The project versioning records all such
|
16 |
+
* contribution and copyright details. If a contributor wants to further mark
|
17 |
+
* their specific copyright on a particular contribution, they should indicate
|
18 |
+
* their copyright solely in the commit message of the change when it is
|
19 |
+
* committed.
|
20 |
+
*
|
21 |
+
* LICENSE
|
22 |
+
*
|
23 |
+
* Redistribution and use in source and binary forms, with or without
|
24 |
+
* modification, are permitted provided that the following conditions are met:
|
25 |
+
*
|
26 |
+
* 1. Redistributions of source code must retain the above copyright notice, this
|
27 |
+
* list of conditions and the following disclaimer.
|
28 |
+
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
29 |
+
* this list of conditions and the following disclaimer in the documentation
|
30 |
+
* and/or other materials provided with the distribution.
|
31 |
+
*
|
32 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
33 |
+
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
34 |
+
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
35 |
+
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
|
36 |
+
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
37 |
+
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
38 |
+
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
39 |
+
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
40 |
+
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
41 |
+
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
42 |
+
*
|
43 |
+
* CONTRIBUTION AGREEMENT
|
44 |
+
*
|
45 |
+
* By contributing to the BVLC/caffe repository through pull-request, comment,
|
46 |
+
* or otherwise, the contributor releases their content to the
|
47 |
+
* license and copyright terms herein.
|
48 |
+
*
|
49 |
+
***************** END Caffe Copyright Notice and Disclaimer ********************
|
50 |
+
*
|
51 |
+
* Copyright (c) 2018 Microsoft
|
52 |
+
* Licensed under The MIT License [see LICENSE for details]
|
53 |
+
* \file modulated_deformable_im2col.cuh
|
54 |
+
* \brief Function definitions of converting an image to
|
55 |
+
* column matrix based on kernel, padding, dilation, and offset.
|
56 |
+
* These functions are mainly used in deformable convolution operators.
|
57 |
+
* \ref: https://arxiv.org/abs/1703.06211
|
58 |
+
* \author Yuwen Xiong, Haozhi Qi, Jifeng Dai, Xizhou Zhu, Han Hu, Dazhi Cheng
|
59 |
+
*/
|
60 |
+
|
61 |
+
// modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/blob/mmdetection/mmdet/ops/dcn/src/deform_conv_cuda_kernel.cu
|
62 |
+
|
63 |
+
#include <ATen/ATen.h>
|
64 |
+
#include <ATen/cuda/CUDAContext.h>
|
65 |
+
#include <THC/THCAtomics.cuh>
|
66 |
+
#include <stdio.h>
|
67 |
+
#include <math.h>
|
68 |
+
#include <float.h>
|
69 |
+
|
70 |
+
using namespace at;
|
71 |
+
|
72 |
+
#define CUDA_KERNEL_LOOP(i, n) \
|
73 |
+
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
|
74 |
+
i += blockDim.x * gridDim.x)
|
75 |
+
|
76 |
+
const int CUDA_NUM_THREADS = 1024;
|
77 |
+
const int kMaxGridNum = 65535;
|
78 |
+
|
79 |
+
inline int GET_BLOCKS(const int N)
|
80 |
+
{
|
81 |
+
return std::min(kMaxGridNum, (N + CUDA_NUM_THREADS - 1) / CUDA_NUM_THREADS);
|
82 |
+
}
|
83 |
+
|
84 |
+
template <typename scalar_t>
|
85 |
+
__device__ scalar_t deformable_im2col_bilinear(const scalar_t *bottom_data, const int data_width,
|
86 |
+
const int height, const int width, scalar_t h, scalar_t w)
|
87 |
+
{
|
88 |
+
|
89 |
+
int h_low = floor(h);
|
90 |
+
int w_low = floor(w);
|
91 |
+
int h_high = h_low + 1;
|
92 |
+
int w_high = w_low + 1;
|
93 |
+
|
94 |
+
scalar_t lh = h - h_low;
|
95 |
+
scalar_t lw = w - w_low;
|
96 |
+
scalar_t hh = 1 - lh, hw = 1 - lw;
|
97 |
+
|
98 |
+
scalar_t v1 = 0;
|
99 |
+
if (h_low >= 0 && w_low >= 0)
|
100 |
+
v1 = bottom_data[h_low * data_width + w_low];
|
101 |
+
scalar_t v2 = 0;
|
102 |
+
if (h_low >= 0 && w_high <= width - 1)
|
103 |
+
v2 = bottom_data[h_low * data_width + w_high];
|
104 |
+
scalar_t v3 = 0;
|
105 |
+
if (h_high <= height - 1 && w_low >= 0)
|
106 |
+
v3 = bottom_data[h_high * data_width + w_low];
|
107 |
+
scalar_t v4 = 0;
|
108 |
+
if (h_high <= height - 1 && w_high <= width - 1)
|
109 |
+
v4 = bottom_data[h_high * data_width + w_high];
|
110 |
+
|
111 |
+
scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
|
112 |
+
|
113 |
+
scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
|
114 |
+
return val;
|
115 |
+
}
|
116 |
+
|
117 |
+
template <typename scalar_t>
|
118 |
+
__device__ scalar_t get_gradient_weight(scalar_t argmax_h, scalar_t argmax_w,
|
119 |
+
const int h, const int w, const int height, const int width)
|
120 |
+
{
|
121 |
+
|
122 |
+
if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 || argmax_w >= width)
|
123 |
+
{
|
124 |
+
//empty
|
125 |
+
return 0;
|
126 |
+
}
|
127 |
+
|
128 |
+
int argmax_h_low = floor(argmax_h);
|
129 |
+
int argmax_w_low = floor(argmax_w);
|
130 |
+
int argmax_h_high = argmax_h_low + 1;
|
131 |
+
int argmax_w_high = argmax_w_low + 1;
|
132 |
+
|
133 |
+
scalar_t weight = 0;
|
134 |
+
if (h == argmax_h_low && w == argmax_w_low)
|
135 |
+
weight = (h + 1 - argmax_h) * (w + 1 - argmax_w);
|
136 |
+
if (h == argmax_h_low && w == argmax_w_high)
|
137 |
+
weight = (h + 1 - argmax_h) * (argmax_w + 1 - w);
|
138 |
+
if (h == argmax_h_high && w == argmax_w_low)
|
139 |
+
weight = (argmax_h + 1 - h) * (w + 1 - argmax_w);
|
140 |
+
if (h == argmax_h_high && w == argmax_w_high)
|
141 |
+
weight = (argmax_h + 1 - h) * (argmax_w + 1 - w);
|
142 |
+
return weight;
|
143 |
+
}
|
144 |
+
|
145 |
+
template <typename scalar_t>
|
146 |
+
__device__ scalar_t get_coordinate_weight(scalar_t argmax_h, scalar_t argmax_w,
|
147 |
+
const int height, const int width, const scalar_t *im_data,
|
148 |
+
const int data_width, const int bp_dir)
|
149 |
+
{
|
150 |
+
|
151 |
+
if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 || argmax_w >= width)
|
152 |
+
{
|
153 |
+
//empty
|
154 |
+
return 0;
|
155 |
+
}
|
156 |
+
|
157 |
+
int argmax_h_low = floor(argmax_h);
|
158 |
+
int argmax_w_low = floor(argmax_w);
|
159 |
+
int argmax_h_high = argmax_h_low + 1;
|
160 |
+
int argmax_w_high = argmax_w_low + 1;
|
161 |
+
|
162 |
+
scalar_t weight = 0;
|
163 |
+
|
164 |
+
if (bp_dir == 0)
|
165 |
+
{
|
166 |
+
if (argmax_h_low >= 0 && argmax_w_low >= 0)
|
167 |
+
weight += -1 * (argmax_w_low + 1 - argmax_w) * im_data[argmax_h_low * data_width + argmax_w_low];
|
168 |
+
if (argmax_h_low >= 0 && argmax_w_high <= width - 1)
|
169 |
+
weight += -1 * (argmax_w - argmax_w_low) * im_data[argmax_h_low * data_width + argmax_w_high];
|
170 |
+
if (argmax_h_high <= height - 1 && argmax_w_low >= 0)
|
171 |
+
weight += (argmax_w_low + 1 - argmax_w) * im_data[argmax_h_high * data_width + argmax_w_low];
|
172 |
+
if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1)
|
173 |
+
weight += (argmax_w - argmax_w_low) * im_data[argmax_h_high * data_width + argmax_w_high];
|
174 |
+
}
|
175 |
+
else if (bp_dir == 1)
|
176 |
+
{
|
177 |
+
if (argmax_h_low >= 0 && argmax_w_low >= 0)
|
178 |
+
weight += -1 * (argmax_h_low + 1 - argmax_h) * im_data[argmax_h_low * data_width + argmax_w_low];
|
179 |
+
if (argmax_h_low >= 0 && argmax_w_high <= width - 1)
|
180 |
+
weight += (argmax_h_low + 1 - argmax_h) * im_data[argmax_h_low * data_width + argmax_w_high];
|
181 |
+
if (argmax_h_high <= height - 1 && argmax_w_low >= 0)
|
182 |
+
weight += -1 * (argmax_h - argmax_h_low) * im_data[argmax_h_high * data_width + argmax_w_low];
|
183 |
+
if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1)
|
184 |
+
weight += (argmax_h - argmax_h_low) * im_data[argmax_h_high * data_width + argmax_w_high];
|
185 |
+
}
|
186 |
+
|
187 |
+
return weight;
|
188 |
+
}
|
189 |
+
|
190 |
+
template <typename scalar_t>
|
191 |
+
__global__ void deformable_im2col_gpu_kernel(const int n, const scalar_t *data_im, const scalar_t *data_offset,
|
192 |
+
const int height, const int width, const int kernel_h, const int kernel_w,
|
193 |
+
const int pad_h, const int pad_w, const int stride_h, const int stride_w,
|
194 |
+
const int dilation_h, const int dilation_w, const int channel_per_deformable_group,
|
195 |
+
const int batch_size, const int num_channels, const int deformable_group,
|
196 |
+
const int height_col, const int width_col,
|
197 |
+
scalar_t *data_col)
|
198 |
+
{
|
199 |
+
CUDA_KERNEL_LOOP(index, n)
|
200 |
+
{
|
201 |
+
// index index of output matrix
|
202 |
+
const int w_col = index % width_col;
|
203 |
+
const int h_col = (index / width_col) % height_col;
|
204 |
+
const int b_col = (index / width_col / height_col) % batch_size;
|
205 |
+
const int c_im = (index / width_col / height_col) / batch_size;
|
206 |
+
const int c_col = c_im * kernel_h * kernel_w;
|
207 |
+
|
208 |
+
// compute deformable group index
|
209 |
+
const int deformable_group_index = c_im / channel_per_deformable_group;
|
210 |
+
|
211 |
+
const int h_in = h_col * stride_h - pad_h;
|
212 |
+
const int w_in = w_col * stride_w - pad_w;
|
213 |
+
scalar_t *data_col_ptr = data_col + ((c_col * batch_size + b_col) * height_col + h_col) * width_col + w_col;
|
214 |
+
//const scalar_t* data_im_ptr = data_im + ((b_col * num_channels + c_im) * height + h_in) * width + w_in;
|
215 |
+
const scalar_t *data_im_ptr = data_im + (b_col * num_channels + c_im) * height * width;
|
216 |
+
const scalar_t *data_offset_ptr = data_offset + (b_col * deformable_group + deformable_group_index) * 2 * kernel_h * kernel_w * height_col * width_col;
|
217 |
+
|
218 |
+
for (int i = 0; i < kernel_h; ++i)
|
219 |
+
{
|
220 |
+
for (int j = 0; j < kernel_w; ++j)
|
221 |
+
{
|
222 |
+
const int data_offset_h_ptr = ((2 * (i * kernel_w + j)) * height_col + h_col) * width_col + w_col;
|
223 |
+
const int data_offset_w_ptr = ((2 * (i * kernel_w + j) + 1) * height_col + h_col) * width_col + w_col;
|
224 |
+
const scalar_t offset_h = data_offset_ptr[data_offset_h_ptr];
|
225 |
+
const scalar_t offset_w = data_offset_ptr[data_offset_w_ptr];
|
226 |
+
scalar_t val = static_cast<scalar_t>(0);
|
227 |
+
const scalar_t h_im = h_in + i * dilation_h + offset_h;
|
228 |
+
const scalar_t w_im = w_in + j * dilation_w + offset_w;
|
229 |
+
if (h_im > -1 && w_im > -1 && h_im < height && w_im < width)
|
230 |
+
{
|
231 |
+
//const scalar_t map_h = i * dilation_h + offset_h;
|
232 |
+
//const scalar_t map_w = j * dilation_w + offset_w;
|
233 |
+
//const int cur_height = height - h_in;
|
234 |
+
//const int cur_width = width - w_in;
|
235 |
+
//val = deformable_im2col_bilinear(data_im_ptr, width, cur_height, cur_width, map_h, map_w);
|
236 |
+
val = deformable_im2col_bilinear(data_im_ptr, width, height, width, h_im, w_im);
|
237 |
+
}
|
238 |
+
*data_col_ptr = val;
|
239 |
+
data_col_ptr += batch_size * height_col * width_col;
|
240 |
+
}
|
241 |
+
}
|
242 |
+
}
|
243 |
+
}
|
244 |
+
|
245 |
+
void deformable_im2col(
|
246 |
+
const at::Tensor data_im, const at::Tensor data_offset, const int channels,
|
247 |
+
const int height, const int width, const int ksize_h, const int ksize_w,
|
248 |
+
const int pad_h, const int pad_w, const int stride_h, const int stride_w,
|
249 |
+
const int dilation_h, const int dilation_w, const int parallel_imgs,
|
250 |
+
const int deformable_group, at::Tensor data_col)
|
251 |
+
{
|
252 |
+
// num_axes should be smaller than block size
|
253 |
+
// todo: check parallel_imgs is correctly passed in
|
254 |
+
int height_col = (height + 2 * pad_h - (dilation_h * (ksize_h - 1) + 1)) / stride_h + 1;
|
255 |
+
int width_col = (width + 2 * pad_w - (dilation_w * (ksize_w - 1) + 1)) / stride_w + 1;
|
256 |
+
int num_kernels = channels * height_col * width_col * parallel_imgs;
|
257 |
+
int channel_per_deformable_group = channels / deformable_group;
|
258 |
+
|
259 |
+
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
|
260 |
+
data_im.scalar_type(), "deformable_im2col_gpu", ([&] {
|
261 |
+
const scalar_t *data_im_ = data_im.data_ptr<scalar_t>();
|
262 |
+
const scalar_t *data_offset_ = data_offset.data_ptr<scalar_t>();
|
263 |
+
scalar_t *data_col_ = data_col.data_ptr<scalar_t>();
|
264 |
+
|
265 |
+
deformable_im2col_gpu_kernel<<<GET_BLOCKS(num_kernels), CUDA_NUM_THREADS, 0, at::cuda::getCurrentCUDAStream()>>>(
|
266 |
+
num_kernels, data_im_, data_offset_, height, width, ksize_h, ksize_w,
|
267 |
+
pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w,
|
268 |
+
channel_per_deformable_group, parallel_imgs, channels, deformable_group,
|
269 |
+
height_col, width_col, data_col_);
|
270 |
+
}));
|
271 |
+
|
272 |
+
cudaError_t err = cudaGetLastError();
|
273 |
+
if (err != cudaSuccess)
|
274 |
+
{
|
275 |
+
printf("error in deformable_im2col: %s\n", cudaGetErrorString(err));
|
276 |
+
}
|
277 |
+
}
|
278 |
+
|
279 |
+
template <typename scalar_t>
|
280 |
+
__global__ void deformable_col2im_gpu_kernel(
|
281 |
+
const int n, const scalar_t *data_col, const scalar_t *data_offset,
|
282 |
+
const int channels, const int height, const int width,
|
283 |
+
const int kernel_h, const int kernel_w,
|
284 |
+
const int pad_h, const int pad_w,
|
285 |
+
const int stride_h, const int stride_w,
|
286 |
+
const int dilation_h, const int dilation_w,
|
287 |
+
const int channel_per_deformable_group,
|
288 |
+
const int batch_size, const int deformable_group,
|
289 |
+
const int height_col, const int width_col,
|
290 |
+
scalar_t *grad_im)
|
291 |
+
{
|
292 |
+
CUDA_KERNEL_LOOP(index, n)
|
293 |
+
{
|
294 |
+
const int j = (index / width_col / height_col / batch_size) % kernel_w;
|
295 |
+
const int i = (index / width_col / height_col / batch_size / kernel_w) % kernel_h;
|
296 |
+
const int c = index / width_col / height_col / batch_size / kernel_w / kernel_h;
|
297 |
+
// compute the start and end of the output
|
298 |
+
|
299 |
+
const int deformable_group_index = c / channel_per_deformable_group;
|
300 |
+
|
301 |
+
int w_out = index % width_col;
|
302 |
+
int h_out = (index / width_col) % height_col;
|
303 |
+
int b = (index / width_col / height_col) % batch_size;
|
304 |
+
int w_in = w_out * stride_w - pad_w;
|
305 |
+
int h_in = h_out * stride_h - pad_h;
|
306 |
+
|
307 |
+
const scalar_t *data_offset_ptr = data_offset + (b * deformable_group + deformable_group_index) *
|
308 |
+
2 * kernel_h * kernel_w * height_col * width_col;
|
309 |
+
const int data_offset_h_ptr = ((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out;
|
310 |
+
const int data_offset_w_ptr = ((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col + w_out;
|
311 |
+
const scalar_t offset_h = data_offset_ptr[data_offset_h_ptr];
|
312 |
+
const scalar_t offset_w = data_offset_ptr[data_offset_w_ptr];
|
313 |
+
const scalar_t cur_inv_h_data = h_in + i * dilation_h + offset_h;
|
314 |
+
const scalar_t cur_inv_w_data = w_in + j * dilation_w + offset_w;
|
315 |
+
|
316 |
+
const scalar_t cur_top_grad = data_col[index];
|
317 |
+
const int cur_h = (int)cur_inv_h_data;
|
318 |
+
const int cur_w = (int)cur_inv_w_data;
|
319 |
+
for (int dy = -2; dy <= 2; dy++)
|
320 |
+
{
|
321 |
+
for (int dx = -2; dx <= 2; dx++)
|
322 |
+
{
|
323 |
+
if (cur_h + dy >= 0 && cur_h + dy < height &&
|
324 |
+
cur_w + dx >= 0 && cur_w + dx < width &&
|
325 |
+
abs(cur_inv_h_data - (cur_h + dy)) < 1 &&
|
326 |
+
abs(cur_inv_w_data - (cur_w + dx)) < 1)
|
327 |
+
{
|
328 |
+
int cur_bottom_grad_pos = ((b * channels + c) * height + cur_h + dy) * width + cur_w + dx;
|
329 |
+
scalar_t weight = get_gradient_weight(cur_inv_h_data, cur_inv_w_data, cur_h + dy, cur_w + dx, height, width);
|
330 |
+
atomicAdd(grad_im + cur_bottom_grad_pos, weight * cur_top_grad);
|
331 |
+
}
|
332 |
+
}
|
333 |
+
}
|
334 |
+
}
|
335 |
+
}
|
336 |
+
|
337 |
+
void deformable_col2im(
|
338 |
+
const at::Tensor data_col, const at::Tensor data_offset, const int channels,
|
339 |
+
const int height, const int width, const int ksize_h,
|
340 |
+
const int ksize_w, const int pad_h, const int pad_w,
|
341 |
+
const int stride_h, const int stride_w,
|
342 |
+
const int dilation_h, const int dilation_w,
|
343 |
+
const int parallel_imgs, const int deformable_group,
|
344 |
+
at::Tensor grad_im)
|
345 |
+
{
|
346 |
+
|
347 |
+
// todo: make sure parallel_imgs is passed in correctly
|
348 |
+
int height_col = (height + 2 * pad_h - (dilation_h * (ksize_h - 1) + 1)) / stride_h + 1;
|
349 |
+
int width_col = (width + 2 * pad_w - (dilation_w * (ksize_w - 1) + 1)) / stride_w + 1;
|
350 |
+
int num_kernels = channels * ksize_h * ksize_w * height_col * width_col * parallel_imgs;
|
351 |
+
int channel_per_deformable_group = channels / deformable_group;
|
352 |
+
|
353 |
+
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
|
354 |
+
data_col.scalar_type(), "deformable_col2im_gpu", ([&] {
|
355 |
+
const scalar_t *data_col_ = data_col.data_ptr<scalar_t>();
|
356 |
+
const scalar_t *data_offset_ = data_offset.data_ptr<scalar_t>();
|
357 |
+
scalar_t *grad_im_ = grad_im.data_ptr<scalar_t>();
|
358 |
+
|
359 |
+
deformable_col2im_gpu_kernel<<<GET_BLOCKS(num_kernels), CUDA_NUM_THREADS, 0, at::cuda::getCurrentCUDAStream()>>>(
|
360 |
+
num_kernels, data_col_, data_offset_, channels, height, width, ksize_h,
|
361 |
+
ksize_w, pad_h, pad_w, stride_h, stride_w,
|
362 |
+
dilation_h, dilation_w, channel_per_deformable_group,
|
363 |
+
parallel_imgs, deformable_group, height_col, width_col, grad_im_);
|
364 |
+
}));
|
365 |
+
|
366 |
+
cudaError_t err = cudaGetLastError();
|
367 |
+
if (err != cudaSuccess)
|
368 |
+
{
|
369 |
+
printf("error in deformable_col2im: %s\n", cudaGetErrorString(err));
|
370 |
+
}
|
371 |
+
}
|
372 |
+
|
373 |
+
template <typename scalar_t>
|
374 |
+
__global__ void deformable_col2im_coord_gpu_kernel(const int n, const scalar_t *data_col,
|
375 |
+
const scalar_t *data_im, const scalar_t *data_offset,
|
376 |
+
const int channels, const int height, const int width,
|
377 |
+
const int kernel_h, const int kernel_w,
|
378 |
+
const int pad_h, const int pad_w,
|
379 |
+
const int stride_h, const int stride_w,
|
380 |
+
const int dilation_h, const int dilation_w,
|
381 |
+
const int channel_per_deformable_group,
|
382 |
+
const int batch_size, const int offset_channels, const int deformable_group,
|
383 |
+
const int height_col, const int width_col, scalar_t *grad_offset)
|
384 |
+
{
|
385 |
+
CUDA_KERNEL_LOOP(index, n)
|
386 |
+
{
|
387 |
+
scalar_t val = 0;
|
388 |
+
int w = index % width_col;
|
389 |
+
int h = (index / width_col) % height_col;
|
390 |
+
int c = (index / width_col / height_col) % offset_channels;
|
391 |
+
int b = (index / width_col / height_col) / offset_channels;
|
392 |
+
// compute the start and end of the output
|
393 |
+
|
394 |
+
const int deformable_group_index = c / (2 * kernel_h * kernel_w);
|
395 |
+
const int col_step = kernel_h * kernel_w;
|
396 |
+
int cnt = 0;
|
397 |
+
const scalar_t *data_col_ptr = data_col + deformable_group_index * channel_per_deformable_group *
|
398 |
+
batch_size * width_col * height_col;
|
399 |
+
const scalar_t *data_im_ptr = data_im + (b * deformable_group + deformable_group_index) *
|
400 |
+
channel_per_deformable_group / kernel_h / kernel_w * height * width;
|
401 |
+
const scalar_t *data_offset_ptr = data_offset + (b * deformable_group + deformable_group_index) * 2 *
|
402 |
+
kernel_h * kernel_w * height_col * width_col;
|
403 |
+
|
404 |
+
const int offset_c = c - deformable_group_index * 2 * kernel_h * kernel_w;
|
405 |
+
|
406 |
+
for (int col_c = (offset_c / 2); col_c < channel_per_deformable_group; col_c += col_step)
|
407 |
+
{
|
408 |
+
const int col_pos = (((col_c * batch_size + b) * height_col) + h) * width_col + w;
|
409 |
+
const int bp_dir = offset_c % 2;
|
410 |
+
|
411 |
+
int j = (col_pos / width_col / height_col / batch_size) % kernel_w;
|
412 |
+
int i = (col_pos / width_col / height_col / batch_size / kernel_w) % kernel_h;
|
413 |
+
int w_out = col_pos % width_col;
|
414 |
+
int h_out = (col_pos / width_col) % height_col;
|
415 |
+
int w_in = w_out * stride_w - pad_w;
|
416 |
+
int h_in = h_out * stride_h - pad_h;
|
417 |
+
const int data_offset_h_ptr = (((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out);
|
418 |
+
const int data_offset_w_ptr = (((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col + w_out);
|
419 |
+
const scalar_t offset_h = data_offset_ptr[data_offset_h_ptr];
|
420 |
+
const scalar_t offset_w = data_offset_ptr[data_offset_w_ptr];
|
421 |
+
scalar_t inv_h = h_in + i * dilation_h + offset_h;
|
422 |
+
scalar_t inv_w = w_in + j * dilation_w + offset_w;
|
423 |
+
if (inv_h <= -1 || inv_w <= -1 || inv_h >= height || inv_w >= width)
|
424 |
+
{
|
425 |
+
inv_h = inv_w = -2;
|
426 |
+
}
|
427 |
+
const scalar_t weight = get_coordinate_weight(
|
428 |
+
inv_h, inv_w,
|
429 |
+
height, width, data_im_ptr + cnt * height * width, width, bp_dir);
|
430 |
+
val += weight * data_col_ptr[col_pos];
|
431 |
+
cnt += 1;
|
432 |
+
}
|
433 |
+
|
434 |
+
grad_offset[index] = val;
|
435 |
+
}
|
436 |
+
}
|
437 |
+
|
438 |
+
void deformable_col2im_coord(
|
439 |
+
const at::Tensor data_col, const at::Tensor data_im, const at::Tensor data_offset,
|
440 |
+
const int channels, const int height, const int width, const int ksize_h,
|
441 |
+
const int ksize_w, const int pad_h, const int pad_w, const int stride_h,
|
442 |
+
const int stride_w, const int dilation_h, const int dilation_w,
|
443 |
+
const int parallel_imgs, const int deformable_group, at::Tensor grad_offset)
|
444 |
+
{
|
445 |
+
|
446 |
+
int height_col = (height + 2 * pad_h - (dilation_h * (ksize_h - 1) + 1)) / stride_h + 1;
|
447 |
+
int width_col = (width + 2 * pad_w - (dilation_w * (ksize_w - 1) + 1)) / stride_w + 1;
|
448 |
+
int num_kernels = height_col * width_col * 2 * ksize_h * ksize_w * deformable_group * parallel_imgs;
|
449 |
+
int channel_per_deformable_group = channels * ksize_h * ksize_w / deformable_group;
|
450 |
+
|
451 |
+
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
|
452 |
+
data_col.scalar_type(), "deformable_col2im_coord_gpu", ([&] {
|
453 |
+
const scalar_t *data_col_ = data_col.data_ptr<scalar_t>();
|
454 |
+
const scalar_t *data_im_ = data_im.data_ptr<scalar_t>();
|
455 |
+
const scalar_t *data_offset_ = data_offset.data_ptr<scalar_t>();
|
456 |
+
scalar_t *grad_offset_ = grad_offset.data_ptr<scalar_t>();
|
457 |
+
|
458 |
+
deformable_col2im_coord_gpu_kernel<<<GET_BLOCKS(num_kernels), CUDA_NUM_THREADS, 0, at::cuda::getCurrentCUDAStream()>>>(
|
459 |
+
num_kernels, data_col_, data_im_, data_offset_, channels, height, width,
|
460 |
+
ksize_h, ksize_w, pad_h, pad_w, stride_h, stride_w,
|
461 |
+
dilation_h, dilation_w, channel_per_deformable_group,
|
462 |
+
parallel_imgs, 2 * ksize_h * ksize_w * deformable_group, deformable_group,
|
463 |
+
height_col, width_col, grad_offset_);
|
464 |
+
}));
|
465 |
+
}
|
466 |
+
|
467 |
+
template <typename scalar_t>
|
468 |
+
__device__ scalar_t dmcn_im2col_bilinear(const scalar_t *bottom_data, const int data_width,
|
469 |
+
const int height, const int width, scalar_t h, scalar_t w)
|
470 |
+
{
|
471 |
+
int h_low = floor(h);
|
472 |
+
int w_low = floor(w);
|
473 |
+
int h_high = h_low + 1;
|
474 |
+
int w_high = w_low + 1;
|
475 |
+
|
476 |
+
scalar_t lh = h - h_low;
|
477 |
+
scalar_t lw = w - w_low;
|
478 |
+
scalar_t hh = 1 - lh, hw = 1 - lw;
|
479 |
+
|
480 |
+
scalar_t v1 = 0;
|
481 |
+
if (h_low >= 0 && w_low >= 0)
|
482 |
+
v1 = bottom_data[h_low * data_width + w_low];
|
483 |
+
scalar_t v2 = 0;
|
484 |
+
if (h_low >= 0 && w_high <= width - 1)
|
485 |
+
v2 = bottom_data[h_low * data_width + w_high];
|
486 |
+
scalar_t v3 = 0;
|
487 |
+
if (h_high <= height - 1 && w_low >= 0)
|
488 |
+
v3 = bottom_data[h_high * data_width + w_low];
|
489 |
+
scalar_t v4 = 0;
|
490 |
+
if (h_high <= height - 1 && w_high <= width - 1)
|
491 |
+
v4 = bottom_data[h_high * data_width + w_high];
|
492 |
+
|
493 |
+
scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
|
494 |
+
|
495 |
+
scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
|
496 |
+
return val;
|
497 |
+
}
|
498 |
+
|
499 |
+
template <typename scalar_t>
|
500 |
+
__device__ scalar_t dmcn_get_gradient_weight(scalar_t argmax_h, scalar_t argmax_w,
|
501 |
+
const int h, const int w, const int height, const int width)
|
502 |
+
{
|
503 |
+
if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 || argmax_w >= width)
|
504 |
+
{
|
505 |
+
//empty
|
506 |
+
return 0;
|
507 |
+
}
|
508 |
+
|
509 |
+
int argmax_h_low = floor(argmax_h);
|
510 |
+
int argmax_w_low = floor(argmax_w);
|
511 |
+
int argmax_h_high = argmax_h_low + 1;
|
512 |
+
int argmax_w_high = argmax_w_low + 1;
|
513 |
+
|
514 |
+
scalar_t weight = 0;
|
515 |
+
if (h == argmax_h_low && w == argmax_w_low)
|
516 |
+
weight = (h + 1 - argmax_h) * (w + 1 - argmax_w);
|
517 |
+
if (h == argmax_h_low && w == argmax_w_high)
|
518 |
+
weight = (h + 1 - argmax_h) * (argmax_w + 1 - w);
|
519 |
+
if (h == argmax_h_high && w == argmax_w_low)
|
520 |
+
weight = (argmax_h + 1 - h) * (w + 1 - argmax_w);
|
521 |
+
if (h == argmax_h_high && w == argmax_w_high)
|
522 |
+
weight = (argmax_h + 1 - h) * (argmax_w + 1 - w);
|
523 |
+
return weight;
|
524 |
+
}
|
525 |
+
|
526 |
+
template <typename scalar_t>
|
527 |
+
__device__ scalar_t dmcn_get_coordinate_weight(scalar_t argmax_h, scalar_t argmax_w,
|
528 |
+
const int height, const int width, const scalar_t *im_data,
|
529 |
+
const int data_width, const int bp_dir)
|
530 |
+
{
|
531 |
+
if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 || argmax_w >= width)
|
532 |
+
{
|
533 |
+
//empty
|
534 |
+
return 0;
|
535 |
+
}
|
536 |
+
|
537 |
+
int argmax_h_low = floor(argmax_h);
|
538 |
+
int argmax_w_low = floor(argmax_w);
|
539 |
+
int argmax_h_high = argmax_h_low + 1;
|
540 |
+
int argmax_w_high = argmax_w_low + 1;
|
541 |
+
|
542 |
+
scalar_t weight = 0;
|
543 |
+
|
544 |
+
if (bp_dir == 0)
|
545 |
+
{
|
546 |
+
if (argmax_h_low >= 0 && argmax_w_low >= 0)
|
547 |
+
weight += -1 * (argmax_w_low + 1 - argmax_w) * im_data[argmax_h_low * data_width + argmax_w_low];
|
548 |
+
if (argmax_h_low >= 0 && argmax_w_high <= width - 1)
|
549 |
+
weight += -1 * (argmax_w - argmax_w_low) * im_data[argmax_h_low * data_width + argmax_w_high];
|
550 |
+
if (argmax_h_high <= height - 1 && argmax_w_low >= 0)
|
551 |
+
weight += (argmax_w_low + 1 - argmax_w) * im_data[argmax_h_high * data_width + argmax_w_low];
|
552 |
+
if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1)
|
553 |
+
weight += (argmax_w - argmax_w_low) * im_data[argmax_h_high * data_width + argmax_w_high];
|
554 |
+
}
|
555 |
+
else if (bp_dir == 1)
|
556 |
+
{
|
557 |
+
if (argmax_h_low >= 0 && argmax_w_low >= 0)
|
558 |
+
weight += -1 * (argmax_h_low + 1 - argmax_h) * im_data[argmax_h_low * data_width + argmax_w_low];
|
559 |
+
if (argmax_h_low >= 0 && argmax_w_high <= width - 1)
|
560 |
+
weight += (argmax_h_low + 1 - argmax_h) * im_data[argmax_h_low * data_width + argmax_w_high];
|
561 |
+
if (argmax_h_high <= height - 1 && argmax_w_low >= 0)
|
562 |
+
weight += -1 * (argmax_h - argmax_h_low) * im_data[argmax_h_high * data_width + argmax_w_low];
|
563 |
+
if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1)
|
564 |
+
weight += (argmax_h - argmax_h_low) * im_data[argmax_h_high * data_width + argmax_w_high];
|
565 |
+
}
|
566 |
+
|
567 |
+
return weight;
|
568 |
+
}
|
569 |
+
|
570 |
+
template <typename scalar_t>
|
571 |
+
__global__ void modulated_deformable_im2col_gpu_kernel(const int n,
|
572 |
+
const scalar_t *data_im, const scalar_t *data_offset, const scalar_t *data_mask,
|
573 |
+
const int height, const int width, const int kernel_h, const int kernel_w,
|
574 |
+
const int pad_h, const int pad_w,
|
575 |
+
const int stride_h, const int stride_w,
|
576 |
+
const int dilation_h, const int dilation_w,
|
577 |
+
const int channel_per_deformable_group,
|
578 |
+
const int batch_size, const int num_channels, const int deformable_group,
|
579 |
+
const int height_col, const int width_col,
|
580 |
+
scalar_t *data_col)
|
581 |
+
{
|
582 |
+
CUDA_KERNEL_LOOP(index, n)
|
583 |
+
{
|
584 |
+
// index index of output matrix
|
585 |
+
const int w_col = index % width_col;
|
586 |
+
const int h_col = (index / width_col) % height_col;
|
587 |
+
const int b_col = (index / width_col / height_col) % batch_size;
|
588 |
+
const int c_im = (index / width_col / height_col) / batch_size;
|
589 |
+
const int c_col = c_im * kernel_h * kernel_w;
|
590 |
+
|
591 |
+
// compute deformable group index
|
592 |
+
const int deformable_group_index = c_im / channel_per_deformable_group;
|
593 |
+
|
594 |
+
const int h_in = h_col * stride_h - pad_h;
|
595 |
+
const int w_in = w_col * stride_w - pad_w;
|
596 |
+
|
597 |
+
scalar_t *data_col_ptr = data_col + ((c_col * batch_size + b_col) * height_col + h_col) * width_col + w_col;
|
598 |
+
//const float* data_im_ptr = data_im + ((b_col * num_channels + c_im) * height + h_in) * width + w_in;
|
599 |
+
const scalar_t *data_im_ptr = data_im + (b_col * num_channels + c_im) * height * width;
|
600 |
+
const scalar_t *data_offset_ptr = data_offset + (b_col * deformable_group + deformable_group_index) * 2 * kernel_h * kernel_w * height_col * width_col;
|
601 |
+
|
602 |
+
const scalar_t *data_mask_ptr = data_mask + (b_col * deformable_group + deformable_group_index) * kernel_h * kernel_w * height_col * width_col;
|
603 |
+
|
604 |
+
for (int i = 0; i < kernel_h; ++i)
|
605 |
+
{
|
606 |
+
for (int j = 0; j < kernel_w; ++j)
|
607 |
+
{
|
608 |
+
const int data_offset_h_ptr = ((2 * (i * kernel_w + j)) * height_col + h_col) * width_col + w_col;
|
609 |
+
const int data_offset_w_ptr = ((2 * (i * kernel_w + j) + 1) * height_col + h_col) * width_col + w_col;
|
610 |
+
const int data_mask_hw_ptr = ((i * kernel_w + j) * height_col + h_col) * width_col + w_col;
|
611 |
+
const scalar_t offset_h = data_offset_ptr[data_offset_h_ptr];
|
612 |
+
const scalar_t offset_w = data_offset_ptr[data_offset_w_ptr];
|
613 |
+
const scalar_t mask = data_mask_ptr[data_mask_hw_ptr];
|
614 |
+
scalar_t val = static_cast<scalar_t>(0);
|
615 |
+
const scalar_t h_im = h_in + i * dilation_h + offset_h;
|
616 |
+
const scalar_t w_im = w_in + j * dilation_w + offset_w;
|
617 |
+
//if (h_im >= 0 && w_im >= 0 && h_im < height && w_im < width) {
|
618 |
+
if (h_im > -1 && w_im > -1 && h_im < height && w_im < width)
|
619 |
+
{
|
620 |
+
//const float map_h = i * dilation_h + offset_h;
|
621 |
+
//const float map_w = j * dilation_w + offset_w;
|
622 |
+
//const int cur_height = height - h_in;
|
623 |
+
//const int cur_width = width - w_in;
|
624 |
+
//val = dmcn_im2col_bilinear(data_im_ptr, width, cur_height, cur_width, map_h, map_w);
|
625 |
+
val = dmcn_im2col_bilinear(data_im_ptr, width, height, width, h_im, w_im);
|
626 |
+
}
|
627 |
+
*data_col_ptr = val * mask;
|
628 |
+
data_col_ptr += batch_size * height_col * width_col;
|
629 |
+
//data_col_ptr += height_col * width_col;
|
630 |
+
}
|
631 |
+
}
|
632 |
+
}
|
633 |
+
}
|
634 |
+
|
635 |
+
template <typename scalar_t>
|
636 |
+
__global__ void modulated_deformable_col2im_gpu_kernel(const int n,
|
637 |
+
const scalar_t *data_col, const scalar_t *data_offset, const scalar_t *data_mask,
|
638 |
+
const int channels, const int height, const int width,
|
639 |
+
const int kernel_h, const int kernel_w,
|
640 |
+
const int pad_h, const int pad_w,
|
641 |
+
const int stride_h, const int stride_w,
|
642 |
+
const int dilation_h, const int dilation_w,
|
643 |
+
const int channel_per_deformable_group,
|
644 |
+
const int batch_size, const int deformable_group,
|
645 |
+
const int height_col, const int width_col,
|
646 |
+
scalar_t *grad_im)
|
647 |
+
{
|
648 |
+
CUDA_KERNEL_LOOP(index, n)
|
649 |
+
{
|
650 |
+
const int j = (index / width_col / height_col / batch_size) % kernel_w;
|
651 |
+
const int i = (index / width_col / height_col / batch_size / kernel_w) % kernel_h;
|
652 |
+
const int c = index / width_col / height_col / batch_size / kernel_w / kernel_h;
|
653 |
+
// compute the start and end of the output
|
654 |
+
|
655 |
+
const int deformable_group_index = c / channel_per_deformable_group;
|
656 |
+
|
657 |
+
int w_out = index % width_col;
|
658 |
+
int h_out = (index / width_col) % height_col;
|
659 |
+
int b = (index / width_col / height_col) % batch_size;
|
660 |
+
int w_in = w_out * stride_w - pad_w;
|
661 |
+
int h_in = h_out * stride_h - pad_h;
|
662 |
+
|
663 |
+
const scalar_t *data_offset_ptr = data_offset + (b * deformable_group + deformable_group_index) * 2 * kernel_h * kernel_w * height_col * width_col;
|
664 |
+
const scalar_t *data_mask_ptr = data_mask + (b * deformable_group + deformable_group_index) * kernel_h * kernel_w * height_col * width_col;
|
665 |
+
const int data_offset_h_ptr = ((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out;
|
666 |
+
const int data_offset_w_ptr = ((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col + w_out;
|
667 |
+
const int data_mask_hw_ptr = ((i * kernel_w + j) * height_col + h_out) * width_col + w_out;
|
668 |
+
const scalar_t offset_h = data_offset_ptr[data_offset_h_ptr];
|
669 |
+
const scalar_t offset_w = data_offset_ptr[data_offset_w_ptr];
|
670 |
+
const scalar_t mask = data_mask_ptr[data_mask_hw_ptr];
|
671 |
+
const scalar_t cur_inv_h_data = h_in + i * dilation_h + offset_h;
|
672 |
+
const scalar_t cur_inv_w_data = w_in + j * dilation_w + offset_w;
|
673 |
+
|
674 |
+
const scalar_t cur_top_grad = data_col[index] * mask;
|
675 |
+
const int cur_h = (int)cur_inv_h_data;
|
676 |
+
const int cur_w = (int)cur_inv_w_data;
|
677 |
+
for (int dy = -2; dy <= 2; dy++)
|
678 |
+
{
|
679 |
+
for (int dx = -2; dx <= 2; dx++)
|
680 |
+
{
|
681 |
+
if (cur_h + dy >= 0 && cur_h + dy < height &&
|
682 |
+
cur_w + dx >= 0 && cur_w + dx < width &&
|
683 |
+
abs(cur_inv_h_data - (cur_h + dy)) < 1 &&
|
684 |
+
abs(cur_inv_w_data - (cur_w + dx)) < 1)
|
685 |
+
{
|
686 |
+
int cur_bottom_grad_pos = ((b * channels + c) * height + cur_h + dy) * width + cur_w + dx;
|
687 |
+
scalar_t weight = dmcn_get_gradient_weight(cur_inv_h_data, cur_inv_w_data, cur_h + dy, cur_w + dx, height, width);
|
688 |
+
atomicAdd(grad_im + cur_bottom_grad_pos, weight * cur_top_grad);
|
689 |
+
}
|
690 |
+
}
|
691 |
+
}
|
692 |
+
}
|
693 |
+
}
|
694 |
+
|
695 |
+
template <typename scalar_t>
|
696 |
+
__global__ void modulated_deformable_col2im_coord_gpu_kernel(const int n,
|
697 |
+
const scalar_t *data_col, const scalar_t *data_im,
|
698 |
+
const scalar_t *data_offset, const scalar_t *data_mask,
|
699 |
+
const int channels, const int height, const int width,
|
700 |
+
const int kernel_h, const int kernel_w,
|
701 |
+
const int pad_h, const int pad_w,
|
702 |
+
const int stride_h, const int stride_w,
|
703 |
+
const int dilation_h, const int dilation_w,
|
704 |
+
const int channel_per_deformable_group,
|
705 |
+
const int batch_size, const int offset_channels, const int deformable_group,
|
706 |
+
const int height_col, const int width_col,
|
707 |
+
scalar_t *grad_offset, scalar_t *grad_mask)
|
708 |
+
{
|
709 |
+
CUDA_KERNEL_LOOP(index, n)
|
710 |
+
{
|
711 |
+
scalar_t val = 0, mval = 0;
|
712 |
+
int w = index % width_col;
|
713 |
+
int h = (index / width_col) % height_col;
|
714 |
+
int c = (index / width_col / height_col) % offset_channels;
|
715 |
+
int b = (index / width_col / height_col) / offset_channels;
|
716 |
+
// compute the start and end of the output
|
717 |
+
|
718 |
+
const int deformable_group_index = c / (2 * kernel_h * kernel_w);
|
719 |
+
const int col_step = kernel_h * kernel_w;
|
720 |
+
int cnt = 0;
|
721 |
+
const scalar_t *data_col_ptr = data_col + deformable_group_index * channel_per_deformable_group * batch_size * width_col * height_col;
|
722 |
+
const scalar_t *data_im_ptr = data_im + (b * deformable_group + deformable_group_index) * channel_per_deformable_group / kernel_h / kernel_w * height * width;
|
723 |
+
const scalar_t *data_offset_ptr = data_offset + (b * deformable_group + deformable_group_index) * 2 * kernel_h * kernel_w * height_col * width_col;
|
724 |
+
const scalar_t *data_mask_ptr = data_mask + (b * deformable_group + deformable_group_index) * kernel_h * kernel_w * height_col * width_col;
|
725 |
+
|
726 |
+
const int offset_c = c - deformable_group_index * 2 * kernel_h * kernel_w;
|
727 |
+
|
728 |
+
for (int col_c = (offset_c / 2); col_c < channel_per_deformable_group; col_c += col_step)
|
729 |
+
{
|
730 |
+
const int col_pos = (((col_c * batch_size + b) * height_col) + h) * width_col + w;
|
731 |
+
const int bp_dir = offset_c % 2;
|
732 |
+
|
733 |
+
int j = (col_pos / width_col / height_col / batch_size) % kernel_w;
|
734 |
+
int i = (col_pos / width_col / height_col / batch_size / kernel_w) % kernel_h;
|
735 |
+
int w_out = col_pos % width_col;
|
736 |
+
int h_out = (col_pos / width_col) % height_col;
|
737 |
+
int w_in = w_out * stride_w - pad_w;
|
738 |
+
int h_in = h_out * stride_h - pad_h;
|
739 |
+
const int data_offset_h_ptr = (((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out);
|
740 |
+
const int data_offset_w_ptr = (((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col + w_out);
|
741 |
+
const int data_mask_hw_ptr = (((i * kernel_w + j) * height_col + h_out) * width_col + w_out);
|
742 |
+
const scalar_t offset_h = data_offset_ptr[data_offset_h_ptr];
|
743 |
+
const scalar_t offset_w = data_offset_ptr[data_offset_w_ptr];
|
744 |
+
const scalar_t mask = data_mask_ptr[data_mask_hw_ptr];
|
745 |
+
scalar_t inv_h = h_in + i * dilation_h + offset_h;
|
746 |
+
scalar_t inv_w = w_in + j * dilation_w + offset_w;
|
747 |
+
if (inv_h <= -1 || inv_w <= -1 || inv_h >= height || inv_w >= width)
|
748 |
+
{
|
749 |
+
inv_h = inv_w = -2;
|
750 |
+
}
|
751 |
+
else
|
752 |
+
{
|
753 |
+
mval += data_col_ptr[col_pos] * dmcn_im2col_bilinear(data_im_ptr + cnt * height * width, width, height, width, inv_h, inv_w);
|
754 |
+
}
|
755 |
+
const scalar_t weight = dmcn_get_coordinate_weight(
|
756 |
+
inv_h, inv_w,
|
757 |
+
height, width, data_im_ptr + cnt * height * width, width, bp_dir);
|
758 |
+
val += weight * data_col_ptr[col_pos] * mask;
|
759 |
+
cnt += 1;
|
760 |
+
}
|
761 |
+
// KERNEL_ASSIGN(grad_offset[index], offset_req, val);
|
762 |
+
grad_offset[index] = val;
|
763 |
+
if (offset_c % 2 == 0)
|
764 |
+
// KERNEL_ASSIGN(grad_mask[(((b * deformable_group + deformable_group_index) * kernel_h * kernel_w + offset_c / 2) * height_col + h) * width_col + w], mask_req, mval);
|
765 |
+
grad_mask[(((b * deformable_group + deformable_group_index) * kernel_h * kernel_w + offset_c / 2) * height_col + h) * width_col + w] = mval;
|
766 |
+
}
|
767 |
+
}
|
768 |
+
|
769 |
+
void modulated_deformable_im2col_cuda(
|
770 |
+
const at::Tensor data_im, const at::Tensor data_offset, const at::Tensor data_mask,
|
771 |
+
const int batch_size, const int channels, const int height_im, const int width_im,
|
772 |
+
const int height_col, const int width_col, const int kernel_h, const int kenerl_w,
|
773 |
+
const int pad_h, const int pad_w, const int stride_h, const int stride_w,
|
774 |
+
const int dilation_h, const int dilation_w,
|
775 |
+
const int deformable_group, at::Tensor data_col)
|
776 |
+
{
|
777 |
+
// num_axes should be smaller than block size
|
778 |
+
const int channel_per_deformable_group = channels / deformable_group;
|
779 |
+
const int num_kernels = channels * batch_size * height_col * width_col;
|
780 |
+
|
781 |
+
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
|
782 |
+
data_im.scalar_type(), "modulated_deformable_im2col_gpu", ([&] {
|
783 |
+
const scalar_t *data_im_ = data_im.data_ptr<scalar_t>();
|
784 |
+
const scalar_t *data_offset_ = data_offset.data_ptr<scalar_t>();
|
785 |
+
const scalar_t *data_mask_ = data_mask.data_ptr<scalar_t>();
|
786 |
+
scalar_t *data_col_ = data_col.data_ptr<scalar_t>();
|
787 |
+
|
788 |
+
modulated_deformable_im2col_gpu_kernel<<<GET_BLOCKS(num_kernels), CUDA_NUM_THREADS, 0, at::cuda::getCurrentCUDAStream()>>>(
|
789 |
+
num_kernels, data_im_, data_offset_, data_mask_, height_im, width_im, kernel_h, kenerl_w,
|
790 |
+
pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w, channel_per_deformable_group,
|
791 |
+
batch_size, channels, deformable_group, height_col, width_col, data_col_);
|
792 |
+
}));
|
793 |
+
|
794 |
+
cudaError_t err = cudaGetLastError();
|
795 |
+
if (err != cudaSuccess)
|
796 |
+
{
|
797 |
+
printf("error in modulated_deformable_im2col_cuda: %s\n", cudaGetErrorString(err));
|
798 |
+
}
|
799 |
+
}
|
800 |
+
|
801 |
+
void modulated_deformable_col2im_cuda(
|
802 |
+
const at::Tensor data_col, const at::Tensor data_offset, const at::Tensor data_mask,
|
803 |
+
const int batch_size, const int channels, const int height_im, const int width_im,
|
804 |
+
const int height_col, const int width_col, const int kernel_h, const int kernel_w,
|
805 |
+
const int pad_h, const int pad_w, const int stride_h, const int stride_w,
|
806 |
+
const int dilation_h, const int dilation_w,
|
807 |
+
const int deformable_group, at::Tensor grad_im)
|
808 |
+
{
|
809 |
+
|
810 |
+
const int channel_per_deformable_group = channels / deformable_group;
|
811 |
+
const int num_kernels = channels * kernel_h * kernel_w * batch_size * height_col * width_col;
|
812 |
+
|
813 |
+
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
|
814 |
+
data_col.scalar_type(), "modulated_deformable_col2im_gpu", ([&] {
|
815 |
+
const scalar_t *data_col_ = data_col.data_ptr<scalar_t>();
|
816 |
+
const scalar_t *data_offset_ = data_offset.data_ptr<scalar_t>();
|
817 |
+
const scalar_t *data_mask_ = data_mask.data_ptr<scalar_t>();
|
818 |
+
scalar_t *grad_im_ = grad_im.data_ptr<scalar_t>();
|
819 |
+
|
820 |
+
modulated_deformable_col2im_gpu_kernel<<<GET_BLOCKS(num_kernels), CUDA_NUM_THREADS, 0, at::cuda::getCurrentCUDAStream()>>>(
|
821 |
+
num_kernels, data_col_, data_offset_, data_mask_, channels, height_im, width_im,
|
822 |
+
kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w,
|
823 |
+
dilation_h, dilation_w, channel_per_deformable_group,
|
824 |
+
batch_size, deformable_group, height_col, width_col, grad_im_);
|
825 |
+
}));
|
826 |
+
|
827 |
+
cudaError_t err = cudaGetLastError();
|
828 |
+
if (err != cudaSuccess)
|
829 |
+
{
|
830 |
+
printf("error in modulated_deformable_col2im_cuda: %s\n", cudaGetErrorString(err));
|
831 |
+
}
|
832 |
+
}
|
833 |
+
|
834 |
+
void modulated_deformable_col2im_coord_cuda(
|
835 |
+
const at::Tensor data_col, const at::Tensor data_im, const at::Tensor data_offset, const at::Tensor data_mask,
|
836 |
+
const int batch_size, const int channels, const int height_im, const int width_im,
|
837 |
+
const int height_col, const int width_col, const int kernel_h, const int kernel_w,
|
838 |
+
const int pad_h, const int pad_w, const int stride_h, const int stride_w,
|
839 |
+
const int dilation_h, const int dilation_w,
|
840 |
+
const int deformable_group,
|
841 |
+
at::Tensor grad_offset, at::Tensor grad_mask)
|
842 |
+
{
|
843 |
+
const int num_kernels = batch_size * height_col * width_col * 2 * kernel_h * kernel_w * deformable_group;
|
844 |
+
const int channel_per_deformable_group = channels * kernel_h * kernel_w / deformable_group;
|
845 |
+
|
846 |
+
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
|
847 |
+
data_col.scalar_type(), "modulated_deformable_col2im_coord_gpu", ([&] {
|
848 |
+
const scalar_t *data_col_ = data_col.data_ptr<scalar_t>();
|
849 |
+
const scalar_t *data_im_ = data_im.data_ptr<scalar_t>();
|
850 |
+
const scalar_t *data_offset_ = data_offset.data_ptr<scalar_t>();
|
851 |
+
const scalar_t *data_mask_ = data_mask.data_ptr<scalar_t>();
|
852 |
+
scalar_t *grad_offset_ = grad_offset.data_ptr<scalar_t>();
|
853 |
+
scalar_t *grad_mask_ = grad_mask.data_ptr<scalar_t>();
|
854 |
+
|
855 |
+
modulated_deformable_col2im_coord_gpu_kernel<<<GET_BLOCKS(num_kernels), CUDA_NUM_THREADS, 0, at::cuda::getCurrentCUDAStream()>>>(
|
856 |
+
num_kernels, data_col_, data_im_, data_offset_, data_mask_, channels, height_im, width_im,
|
857 |
+
kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w,
|
858 |
+
dilation_h, dilation_w, channel_per_deformable_group,
|
859 |
+
batch_size, 2 * kernel_h * kernel_w * deformable_group, deformable_group, height_col, width_col,
|
860 |
+
grad_offset_, grad_mask_);
|
861 |
+
}));
|
862 |
+
cudaError_t err = cudaGetLastError();
|
863 |
+
if (err != cudaSuccess)
|
864 |
+
{
|
865 |
+
printf("error in modulated_deformable_col2im_coord_cuda: %s\n", cudaGetErrorString(err));
|
866 |
+
}
|
867 |
+
}
|
CodeFormer/basicsr/ops/dcn/src/deform_conv_ext.cpp
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// modify from
|
2 |
+
// https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/blob/mmdetection/mmdet/ops/dcn/src/deform_conv_cuda.c
|
3 |
+
|
4 |
+
#include <torch/extension.h>
|
5 |
+
#include <ATen/DeviceGuard.h>
|
6 |
+
|
7 |
+
#include <cmath>
|
8 |
+
#include <vector>
|
9 |
+
|
10 |
+
#define WITH_CUDA // always use cuda
|
11 |
+
#ifdef WITH_CUDA
|
12 |
+
int deform_conv_forward_cuda(at::Tensor input, at::Tensor weight,
|
13 |
+
at::Tensor offset, at::Tensor output,
|
14 |
+
at::Tensor columns, at::Tensor ones, int kW,
|
15 |
+
int kH, int dW, int dH, int padW, int padH,
|
16 |
+
int dilationW, int dilationH, int group,
|
17 |
+
int deformable_group, int im2col_step);
|
18 |
+
|
19 |
+
int deform_conv_backward_input_cuda(at::Tensor input, at::Tensor offset,
|
20 |
+
at::Tensor gradOutput, at::Tensor gradInput,
|
21 |
+
at::Tensor gradOffset, at::Tensor weight,
|
22 |
+
at::Tensor columns, int kW, int kH, int dW,
|
23 |
+
int dH, int padW, int padH, int dilationW,
|
24 |
+
int dilationH, int group,
|
25 |
+
int deformable_group, int im2col_step);
|
26 |
+
|
27 |
+
int deform_conv_backward_parameters_cuda(
|
28 |
+
at::Tensor input, at::Tensor offset, at::Tensor gradOutput,
|
29 |
+
at::Tensor gradWeight, // at::Tensor gradBias,
|
30 |
+
at::Tensor columns, at::Tensor ones, int kW, int kH, int dW, int dH,
|
31 |
+
int padW, int padH, int dilationW, int dilationH, int group,
|
32 |
+
int deformable_group, float scale, int im2col_step);
|
33 |
+
|
34 |
+
void modulated_deform_conv_cuda_forward(
|
35 |
+
at::Tensor input, at::Tensor weight, at::Tensor bias, at::Tensor ones,
|
36 |
+
at::Tensor offset, at::Tensor mask, at::Tensor output, at::Tensor columns,
|
37 |
+
int kernel_h, int kernel_w, const int stride_h, const int stride_w,
|
38 |
+
const int pad_h, const int pad_w, const int dilation_h,
|
39 |
+
const int dilation_w, const int group, const int deformable_group,
|
40 |
+
const bool with_bias);
|
41 |
+
|
42 |
+
void modulated_deform_conv_cuda_backward(
|
43 |
+
at::Tensor input, at::Tensor weight, at::Tensor bias, at::Tensor ones,
|
44 |
+
at::Tensor offset, at::Tensor mask, at::Tensor columns,
|
45 |
+
at::Tensor grad_input, at::Tensor grad_weight, at::Tensor grad_bias,
|
46 |
+
at::Tensor grad_offset, at::Tensor grad_mask, at::Tensor grad_output,
|
47 |
+
int kernel_h, int kernel_w, int stride_h, int stride_w, int pad_h,
|
48 |
+
int pad_w, int dilation_h, int dilation_w, int group, int deformable_group,
|
49 |
+
const bool with_bias);
|
50 |
+
#endif
|
51 |
+
|
52 |
+
int deform_conv_forward(at::Tensor input, at::Tensor weight,
|
53 |
+
at::Tensor offset, at::Tensor output,
|
54 |
+
at::Tensor columns, at::Tensor ones, int kW,
|
55 |
+
int kH, int dW, int dH, int padW, int padH,
|
56 |
+
int dilationW, int dilationH, int group,
|
57 |
+
int deformable_group, int im2col_step) {
|
58 |
+
if (input.device().is_cuda()) {
|
59 |
+
#ifdef WITH_CUDA
|
60 |
+
return deform_conv_forward_cuda(input, weight, offset, output, columns,
|
61 |
+
ones, kW, kH, dW, dH, padW, padH, dilationW, dilationH, group,
|
62 |
+
deformable_group, im2col_step);
|
63 |
+
#else
|
64 |
+
AT_ERROR("deform conv is not compiled with GPU support");
|
65 |
+
#endif
|
66 |
+
}
|
67 |
+
AT_ERROR("deform conv is not implemented on CPU");
|
68 |
+
}
|
69 |
+
|
70 |
+
int deform_conv_backward_input(at::Tensor input, at::Tensor offset,
|
71 |
+
at::Tensor gradOutput, at::Tensor gradInput,
|
72 |
+
at::Tensor gradOffset, at::Tensor weight,
|
73 |
+
at::Tensor columns, int kW, int kH, int dW,
|
74 |
+
int dH, int padW, int padH, int dilationW,
|
75 |
+
int dilationH, int group,
|
76 |
+
int deformable_group, int im2col_step) {
|
77 |
+
if (input.device().is_cuda()) {
|
78 |
+
#ifdef WITH_CUDA
|
79 |
+
return deform_conv_backward_input_cuda(input, offset, gradOutput,
|
80 |
+
gradInput, gradOffset, weight, columns, kW, kH, dW, dH, padW, padH,
|
81 |
+
dilationW, dilationH, group, deformable_group, im2col_step);
|
82 |
+
#else
|
83 |
+
AT_ERROR("deform conv is not compiled with GPU support");
|
84 |
+
#endif
|
85 |
+
}
|
86 |
+
AT_ERROR("deform conv is not implemented on CPU");
|
87 |
+
}
|
88 |
+
|
89 |
+
int deform_conv_backward_parameters(
|
90 |
+
at::Tensor input, at::Tensor offset, at::Tensor gradOutput,
|
91 |
+
at::Tensor gradWeight, // at::Tensor gradBias,
|
92 |
+
at::Tensor columns, at::Tensor ones, int kW, int kH, int dW, int dH,
|
93 |
+
int padW, int padH, int dilationW, int dilationH, int group,
|
94 |
+
int deformable_group, float scale, int im2col_step) {
|
95 |
+
if (input.device().is_cuda()) {
|
96 |
+
#ifdef WITH_CUDA
|
97 |
+
return deform_conv_backward_parameters_cuda(input, offset, gradOutput,
|
98 |
+
gradWeight, columns, ones, kW, kH, dW, dH, padW, padH, dilationW,
|
99 |
+
dilationH, group, deformable_group, scale, im2col_step);
|
100 |
+
#else
|
101 |
+
AT_ERROR("deform conv is not compiled with GPU support");
|
102 |
+
#endif
|
103 |
+
}
|
104 |
+
AT_ERROR("deform conv is not implemented on CPU");
|
105 |
+
}
|
106 |
+
|
107 |
+
void modulated_deform_conv_forward(
|
108 |
+
at::Tensor input, at::Tensor weight, at::Tensor bias, at::Tensor ones,
|
109 |
+
at::Tensor offset, at::Tensor mask, at::Tensor output, at::Tensor columns,
|
110 |
+
int kernel_h, int kernel_w, const int stride_h, const int stride_w,
|
111 |
+
const int pad_h, const int pad_w, const int dilation_h,
|
112 |
+
const int dilation_w, const int group, const int deformable_group,
|
113 |
+
const bool with_bias) {
|
114 |
+
if (input.device().is_cuda()) {
|
115 |
+
#ifdef WITH_CUDA
|
116 |
+
return modulated_deform_conv_cuda_forward(input, weight, bias, ones,
|
117 |
+
offset, mask, output, columns, kernel_h, kernel_w, stride_h,
|
118 |
+
stride_w, pad_h, pad_w, dilation_h, dilation_w, group,
|
119 |
+
deformable_group, with_bias);
|
120 |
+
#else
|
121 |
+
AT_ERROR("modulated deform conv is not compiled with GPU support");
|
122 |
+
#endif
|
123 |
+
}
|
124 |
+
AT_ERROR("modulated deform conv is not implemented on CPU");
|
125 |
+
}
|
126 |
+
|
127 |
+
void modulated_deform_conv_backward(
|
128 |
+
at::Tensor input, at::Tensor weight, at::Tensor bias, at::Tensor ones,
|
129 |
+
at::Tensor offset, at::Tensor mask, at::Tensor columns,
|
130 |
+
at::Tensor grad_input, at::Tensor grad_weight, at::Tensor grad_bias,
|
131 |
+
at::Tensor grad_offset, at::Tensor grad_mask, at::Tensor grad_output,
|
132 |
+
int kernel_h, int kernel_w, int stride_h, int stride_w, int pad_h,
|
133 |
+
int pad_w, int dilation_h, int dilation_w, int group, int deformable_group,
|
134 |
+
const bool with_bias) {
|
135 |
+
if (input.device().is_cuda()) {
|
136 |
+
#ifdef WITH_CUDA
|
137 |
+
return modulated_deform_conv_cuda_backward(input, weight, bias, ones,
|
138 |
+
offset, mask, columns, grad_input, grad_weight, grad_bias, grad_offset,
|
139 |
+
grad_mask, grad_output, kernel_h, kernel_w, stride_h, stride_w,
|
140 |
+
pad_h, pad_w, dilation_h, dilation_w, group, deformable_group,
|
141 |
+
with_bias);
|
142 |
+
#else
|
143 |
+
AT_ERROR("modulated deform conv is not compiled with GPU support");
|
144 |
+
#endif
|
145 |
+
}
|
146 |
+
AT_ERROR("modulated deform conv is not implemented on CPU");
|
147 |
+
}
|
148 |
+
|
149 |
+
|
150 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
151 |
+
m.def("deform_conv_forward", &deform_conv_forward,
|
152 |
+
"deform forward");
|
153 |
+
m.def("deform_conv_backward_input", &deform_conv_backward_input,
|
154 |
+
"deform_conv_backward_input");
|
155 |
+
m.def("deform_conv_backward_parameters",
|
156 |
+
&deform_conv_backward_parameters,
|
157 |
+
"deform_conv_backward_parameters");
|
158 |
+
m.def("modulated_deform_conv_forward",
|
159 |
+
&modulated_deform_conv_forward,
|
160 |
+
"modulated deform conv forward");
|
161 |
+
m.def("modulated_deform_conv_backward",
|
162 |
+
&modulated_deform_conv_backward,
|
163 |
+
"modulated deform conv backward");
|
164 |
+
}
|
CodeFormer/basicsr/ops/fused_act/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .fused_act import FusedLeakyReLU, fused_leaky_relu
|
2 |
+
|
3 |
+
__all__ = ['FusedLeakyReLU', 'fused_leaky_relu']
|
CodeFormer/basicsr/ops/fused_act/fused_act.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modify from https://github.com/rosinality/stylegan2-pytorch/blob/master/op/fused_act.py # noqa:E501
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.autograd import Function
|
6 |
+
|
7 |
+
try:
|
8 |
+
from . import fused_act_ext
|
9 |
+
except ImportError:
|
10 |
+
import os
|
11 |
+
BASICSR_JIT = os.getenv('BASICSR_JIT')
|
12 |
+
if BASICSR_JIT == 'True':
|
13 |
+
from torch.utils.cpp_extension import load
|
14 |
+
module_path = os.path.dirname(__file__)
|
15 |
+
fused_act_ext = load(
|
16 |
+
'fused',
|
17 |
+
sources=[
|
18 |
+
os.path.join(module_path, 'src', 'fused_bias_act.cpp'),
|
19 |
+
os.path.join(module_path, 'src', 'fused_bias_act_kernel.cu'),
|
20 |
+
],
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
class FusedLeakyReLUFunctionBackward(Function):
|
25 |
+
|
26 |
+
@staticmethod
|
27 |
+
def forward(ctx, grad_output, out, negative_slope, scale):
|
28 |
+
ctx.save_for_backward(out)
|
29 |
+
ctx.negative_slope = negative_slope
|
30 |
+
ctx.scale = scale
|
31 |
+
|
32 |
+
empty = grad_output.new_empty(0)
|
33 |
+
|
34 |
+
grad_input = fused_act_ext.fused_bias_act(grad_output, empty, out, 3, 1, negative_slope, scale)
|
35 |
+
|
36 |
+
dim = [0]
|
37 |
+
|
38 |
+
if grad_input.ndim > 2:
|
39 |
+
dim += list(range(2, grad_input.ndim))
|
40 |
+
|
41 |
+
grad_bias = grad_input.sum(dim).detach()
|
42 |
+
|
43 |
+
return grad_input, grad_bias
|
44 |
+
|
45 |
+
@staticmethod
|
46 |
+
def backward(ctx, gradgrad_input, gradgrad_bias):
|
47 |
+
out, = ctx.saved_tensors
|
48 |
+
gradgrad_out = fused_act_ext.fused_bias_act(gradgrad_input, gradgrad_bias, out, 3, 1, ctx.negative_slope,
|
49 |
+
ctx.scale)
|
50 |
+
|
51 |
+
return gradgrad_out, None, None, None
|
52 |
+
|
53 |
+
|
54 |
+
class FusedLeakyReLUFunction(Function):
|
55 |
+
|
56 |
+
@staticmethod
|
57 |
+
def forward(ctx, input, bias, negative_slope, scale):
|
58 |
+
empty = input.new_empty(0)
|
59 |
+
out = fused_act_ext.fused_bias_act(input, bias, empty, 3, 0, negative_slope, scale)
|
60 |
+
ctx.save_for_backward(out)
|
61 |
+
ctx.negative_slope = negative_slope
|
62 |
+
ctx.scale = scale
|
63 |
+
|
64 |
+
return out
|
65 |
+
|
66 |
+
@staticmethod
|
67 |
+
def backward(ctx, grad_output):
|
68 |
+
out, = ctx.saved_tensors
|
69 |
+
|
70 |
+
grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply(grad_output, out, ctx.negative_slope, ctx.scale)
|
71 |
+
|
72 |
+
return grad_input, grad_bias, None, None
|
73 |
+
|
74 |
+
|
75 |
+
class FusedLeakyReLU(nn.Module):
|
76 |
+
|
77 |
+
def __init__(self, channel, negative_slope=0.2, scale=2**0.5):
|
78 |
+
super().__init__()
|
79 |
+
|
80 |
+
self.bias = nn.Parameter(torch.zeros(channel))
|
81 |
+
self.negative_slope = negative_slope
|
82 |
+
self.scale = scale
|
83 |
+
|
84 |
+
def forward(self, input):
|
85 |
+
return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
|
86 |
+
|
87 |
+
|
88 |
+
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2**0.5):
|
89 |
+
return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)
|
CodeFormer/basicsr/ops/fused_act/src/fused_bias_act.cpp
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// from https://github.com/rosinality/stylegan2-pytorch/blob/master/op/fused_bias_act.cpp
|
2 |
+
#include <torch/extension.h>
|
3 |
+
|
4 |
+
|
5 |
+
torch::Tensor fused_bias_act_op(const torch::Tensor& input,
|
6 |
+
const torch::Tensor& bias,
|
7 |
+
const torch::Tensor& refer,
|
8 |
+
int act, int grad, float alpha, float scale);
|
9 |
+
|
10 |
+
#define CHECK_CUDA(x) TORCH_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor")
|
11 |
+
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
|
12 |
+
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)
|
13 |
+
|
14 |
+
torch::Tensor fused_bias_act(const torch::Tensor& input,
|
15 |
+
const torch::Tensor& bias,
|
16 |
+
const torch::Tensor& refer,
|
17 |
+
int act, int grad, float alpha, float scale) {
|
18 |
+
CHECK_CUDA(input);
|
19 |
+
CHECK_CUDA(bias);
|
20 |
+
|
21 |
+
return fused_bias_act_op(input, bias, refer, act, grad, alpha, scale);
|
22 |
+
}
|
23 |
+
|
24 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
25 |
+
m.def("fused_bias_act", &fused_bias_act, "fused bias act (CUDA)");
|
26 |
+
}
|
CodeFormer/basicsr/ops/fused_act/src/fused_bias_act_kernel.cu
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// from https://github.com/rosinality/stylegan2-pytorch/blob/master/op/fused_bias_act_kernel.cu
|
2 |
+
// Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
|
3 |
+
//
|
4 |
+
// This work is made available under the Nvidia Source Code License-NC.
|
5 |
+
// To view a copy of this license, visit
|
6 |
+
// https://nvlabs.github.io/stylegan2/license.html
|
7 |
+
|
8 |
+
#include <torch/types.h>
|
9 |
+
|
10 |
+
#include <ATen/ATen.h>
|
11 |
+
#include <ATen/AccumulateType.h>
|
12 |
+
#include <ATen/cuda/CUDAContext.h>
|
13 |
+
#include <ATen/cuda/CUDAApplyUtils.cuh>
|
14 |
+
|
15 |
+
#include <cuda.h>
|
16 |
+
#include <cuda_runtime.h>
|
17 |
+
|
18 |
+
|
19 |
+
template <typename scalar_t>
|
20 |
+
static __global__ void fused_bias_act_kernel(scalar_t* out, const scalar_t* p_x, const scalar_t* p_b, const scalar_t* p_ref,
|
21 |
+
int act, int grad, scalar_t alpha, scalar_t scale, int loop_x, int size_x, int step_b, int size_b, int use_bias, int use_ref) {
|
22 |
+
int xi = blockIdx.x * loop_x * blockDim.x + threadIdx.x;
|
23 |
+
|
24 |
+
scalar_t zero = 0.0;
|
25 |
+
|
26 |
+
for (int loop_idx = 0; loop_idx < loop_x && xi < size_x; loop_idx++, xi += blockDim.x) {
|
27 |
+
scalar_t x = p_x[xi];
|
28 |
+
|
29 |
+
if (use_bias) {
|
30 |
+
x += p_b[(xi / step_b) % size_b];
|
31 |
+
}
|
32 |
+
|
33 |
+
scalar_t ref = use_ref ? p_ref[xi] : zero;
|
34 |
+
|
35 |
+
scalar_t y;
|
36 |
+
|
37 |
+
switch (act * 10 + grad) {
|
38 |
+
default:
|
39 |
+
case 10: y = x; break;
|
40 |
+
case 11: y = x; break;
|
41 |
+
case 12: y = 0.0; break;
|
42 |
+
|
43 |
+
case 30: y = (x > 0.0) ? x : x * alpha; break;
|
44 |
+
case 31: y = (ref > 0.0) ? x : x * alpha; break;
|
45 |
+
case 32: y = 0.0; break;
|
46 |
+
}
|
47 |
+
|
48 |
+
out[xi] = y * scale;
|
49 |
+
}
|
50 |
+
}
|
51 |
+
|
52 |
+
|
53 |
+
torch::Tensor fused_bias_act_op(const torch::Tensor& input, const torch::Tensor& bias, const torch::Tensor& refer,
|
54 |
+
int act, int grad, float alpha, float scale) {
|
55 |
+
int curDevice = -1;
|
56 |
+
cudaGetDevice(&curDevice);
|
57 |
+
cudaStream_t stream = at::cuda::getCurrentCUDAStream(curDevice);
|
58 |
+
|
59 |
+
auto x = input.contiguous();
|
60 |
+
auto b = bias.contiguous();
|
61 |
+
auto ref = refer.contiguous();
|
62 |
+
|
63 |
+
int use_bias = b.numel() ? 1 : 0;
|
64 |
+
int use_ref = ref.numel() ? 1 : 0;
|
65 |
+
|
66 |
+
int size_x = x.numel();
|
67 |
+
int size_b = b.numel();
|
68 |
+
int step_b = 1;
|
69 |
+
|
70 |
+
for (int i = 1 + 1; i < x.dim(); i++) {
|
71 |
+
step_b *= x.size(i);
|
72 |
+
}
|
73 |
+
|
74 |
+
int loop_x = 4;
|
75 |
+
int block_size = 4 * 32;
|
76 |
+
int grid_size = (size_x - 1) / (loop_x * block_size) + 1;
|
77 |
+
|
78 |
+
auto y = torch::empty_like(x);
|
79 |
+
|
80 |
+
AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "fused_bias_act_kernel", [&] {
|
81 |
+
fused_bias_act_kernel<scalar_t><<<grid_size, block_size, 0, stream>>>(
|
82 |
+
y.data_ptr<scalar_t>(),
|
83 |
+
x.data_ptr<scalar_t>(),
|
84 |
+
b.data_ptr<scalar_t>(),
|
85 |
+
ref.data_ptr<scalar_t>(),
|
86 |
+
act,
|
87 |
+
grad,
|
88 |
+
alpha,
|
89 |
+
scale,
|
90 |
+
loop_x,
|
91 |
+
size_x,
|
92 |
+
step_b,
|
93 |
+
size_b,
|
94 |
+
use_bias,
|
95 |
+
use_ref
|
96 |
+
);
|
97 |
+
});
|
98 |
+
|
99 |
+
return y;
|
100 |
+
}
|
CodeFormer/basicsr/ops/upfirdn2d/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .upfirdn2d import upfirdn2d
|
2 |
+
|
3 |
+
__all__ = ['upfirdn2d']
|
CodeFormer/basicsr/ops/upfirdn2d/src/upfirdn2d.cpp
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// from https://github.com/rosinality/stylegan2-pytorch/blob/master/op/upfirdn2d.cpp
|
2 |
+
#include <torch/extension.h>
|
3 |
+
|
4 |
+
|
5 |
+
torch::Tensor upfirdn2d_op(const torch::Tensor& input, const torch::Tensor& kernel,
|
6 |
+
int up_x, int up_y, int down_x, int down_y,
|
7 |
+
int pad_x0, int pad_x1, int pad_y0, int pad_y1);
|
8 |
+
|
9 |
+
#define CHECK_CUDA(x) TORCH_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor")
|
10 |
+
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
|
11 |
+
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)
|
12 |
+
|
13 |
+
torch::Tensor upfirdn2d(const torch::Tensor& input, const torch::Tensor& kernel,
|
14 |
+
int up_x, int up_y, int down_x, int down_y,
|
15 |
+
int pad_x0, int pad_x1, int pad_y0, int pad_y1) {
|
16 |
+
CHECK_CUDA(input);
|
17 |
+
CHECK_CUDA(kernel);
|
18 |
+
|
19 |
+
return upfirdn2d_op(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1);
|
20 |
+
}
|
21 |
+
|
22 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
23 |
+
m.def("upfirdn2d", &upfirdn2d, "upfirdn2d (CUDA)");
|
24 |
+
}
|
CodeFormer/basicsr/ops/upfirdn2d/src/upfirdn2d_kernel.cu
ADDED
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// from https://github.com/rosinality/stylegan2-pytorch/blob/master/op/upfirdn2d_kernel.cu
|
2 |
+
// Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
|
3 |
+
//
|
4 |
+
// This work is made available under the Nvidia Source Code License-NC.
|
5 |
+
// To view a copy of this license, visit
|
6 |
+
// https://nvlabs.github.io/stylegan2/license.html
|
7 |
+
|
8 |
+
#include <torch/types.h>
|
9 |
+
|
10 |
+
#include <ATen/ATen.h>
|
11 |
+
#include <ATen/AccumulateType.h>
|
12 |
+
#include <ATen/cuda/CUDAApplyUtils.cuh>
|
13 |
+
#include <ATen/cuda/CUDAContext.h>
|
14 |
+
|
15 |
+
#include <cuda.h>
|
16 |
+
#include <cuda_runtime.h>
|
17 |
+
|
18 |
+
static __host__ __device__ __forceinline__ int floor_div(int a, int b) {
|
19 |
+
int c = a / b;
|
20 |
+
|
21 |
+
if (c * b > a) {
|
22 |
+
c--;
|
23 |
+
}
|
24 |
+
|
25 |
+
return c;
|
26 |
+
}
|
27 |
+
|
28 |
+
struct UpFirDn2DKernelParams {
|
29 |
+
int up_x;
|
30 |
+
int up_y;
|
31 |
+
int down_x;
|
32 |
+
int down_y;
|
33 |
+
int pad_x0;
|
34 |
+
int pad_x1;
|
35 |
+
int pad_y0;
|
36 |
+
int pad_y1;
|
37 |
+
|
38 |
+
int major_dim;
|
39 |
+
int in_h;
|
40 |
+
int in_w;
|
41 |
+
int minor_dim;
|
42 |
+
int kernel_h;
|
43 |
+
int kernel_w;
|
44 |
+
int out_h;
|
45 |
+
int out_w;
|
46 |
+
int loop_major;
|
47 |
+
int loop_x;
|
48 |
+
};
|
49 |
+
|
50 |
+
template <typename scalar_t>
|
51 |
+
__global__ void upfirdn2d_kernel_large(scalar_t *out, const scalar_t *input,
|
52 |
+
const scalar_t *kernel,
|
53 |
+
const UpFirDn2DKernelParams p) {
|
54 |
+
int minor_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
55 |
+
int out_y = minor_idx / p.minor_dim;
|
56 |
+
minor_idx -= out_y * p.minor_dim;
|
57 |
+
int out_x_base = blockIdx.y * p.loop_x * blockDim.y + threadIdx.y;
|
58 |
+
int major_idx_base = blockIdx.z * p.loop_major;
|
59 |
+
|
60 |
+
if (out_x_base >= p.out_w || out_y >= p.out_h ||
|
61 |
+
major_idx_base >= p.major_dim) {
|
62 |
+
return;
|
63 |
+
}
|
64 |
+
|
65 |
+
int mid_y = out_y * p.down_y + p.up_y - 1 - p.pad_y0;
|
66 |
+
int in_y = min(max(floor_div(mid_y, p.up_y), 0), p.in_h);
|
67 |
+
int h = min(max(floor_div(mid_y + p.kernel_h, p.up_y), 0), p.in_h) - in_y;
|
68 |
+
int kernel_y = mid_y + p.kernel_h - (in_y + 1) * p.up_y;
|
69 |
+
|
70 |
+
for (int loop_major = 0, major_idx = major_idx_base;
|
71 |
+
loop_major < p.loop_major && major_idx < p.major_dim;
|
72 |
+
loop_major++, major_idx++) {
|
73 |
+
for (int loop_x = 0, out_x = out_x_base;
|
74 |
+
loop_x < p.loop_x && out_x < p.out_w; loop_x++, out_x += blockDim.y) {
|
75 |
+
int mid_x = out_x * p.down_x + p.up_x - 1 - p.pad_x0;
|
76 |
+
int in_x = min(max(floor_div(mid_x, p.up_x), 0), p.in_w);
|
77 |
+
int w = min(max(floor_div(mid_x + p.kernel_w, p.up_x), 0), p.in_w) - in_x;
|
78 |
+
int kernel_x = mid_x + p.kernel_w - (in_x + 1) * p.up_x;
|
79 |
+
|
80 |
+
const scalar_t *x_p =
|
81 |
+
&input[((major_idx * p.in_h + in_y) * p.in_w + in_x) * p.minor_dim +
|
82 |
+
minor_idx];
|
83 |
+
const scalar_t *k_p = &kernel[kernel_y * p.kernel_w + kernel_x];
|
84 |
+
int x_px = p.minor_dim;
|
85 |
+
int k_px = -p.up_x;
|
86 |
+
int x_py = p.in_w * p.minor_dim;
|
87 |
+
int k_py = -p.up_y * p.kernel_w;
|
88 |
+
|
89 |
+
scalar_t v = 0.0f;
|
90 |
+
|
91 |
+
for (int y = 0; y < h; y++) {
|
92 |
+
for (int x = 0; x < w; x++) {
|
93 |
+
v += static_cast<scalar_t>(*x_p) * static_cast<scalar_t>(*k_p);
|
94 |
+
x_p += x_px;
|
95 |
+
k_p += k_px;
|
96 |
+
}
|
97 |
+
|
98 |
+
x_p += x_py - w * x_px;
|
99 |
+
k_p += k_py - w * k_px;
|
100 |
+
}
|
101 |
+
|
102 |
+
out[((major_idx * p.out_h + out_y) * p.out_w + out_x) * p.minor_dim +
|
103 |
+
minor_idx] = v;
|
104 |
+
}
|
105 |
+
}
|
106 |
+
}
|
107 |
+
|
108 |
+
template <typename scalar_t, int up_x, int up_y, int down_x, int down_y,
|
109 |
+
int kernel_h, int kernel_w, int tile_out_h, int tile_out_w>
|
110 |
+
__global__ void upfirdn2d_kernel(scalar_t *out, const scalar_t *input,
|
111 |
+
const scalar_t *kernel,
|
112 |
+
const UpFirDn2DKernelParams p) {
|
113 |
+
const int tile_in_h = ((tile_out_h - 1) * down_y + kernel_h - 1) / up_y + 1;
|
114 |
+
const int tile_in_w = ((tile_out_w - 1) * down_x + kernel_w - 1) / up_x + 1;
|
115 |
+
|
116 |
+
__shared__ volatile float sk[kernel_h][kernel_w];
|
117 |
+
__shared__ volatile float sx[tile_in_h][tile_in_w];
|
118 |
+
|
119 |
+
int minor_idx = blockIdx.x;
|
120 |
+
int tile_out_y = minor_idx / p.minor_dim;
|
121 |
+
minor_idx -= tile_out_y * p.minor_dim;
|
122 |
+
tile_out_y *= tile_out_h;
|
123 |
+
int tile_out_x_base = blockIdx.y * p.loop_x * tile_out_w;
|
124 |
+
int major_idx_base = blockIdx.z * p.loop_major;
|
125 |
+
|
126 |
+
if (tile_out_x_base >= p.out_w | tile_out_y >= p.out_h |
|
127 |
+
major_idx_base >= p.major_dim) {
|
128 |
+
return;
|
129 |
+
}
|
130 |
+
|
131 |
+
for (int tap_idx = threadIdx.x; tap_idx < kernel_h * kernel_w;
|
132 |
+
tap_idx += blockDim.x) {
|
133 |
+
int ky = tap_idx / kernel_w;
|
134 |
+
int kx = tap_idx - ky * kernel_w;
|
135 |
+
scalar_t v = 0.0;
|
136 |
+
|
137 |
+
if (kx < p.kernel_w & ky < p.kernel_h) {
|
138 |
+
v = kernel[(p.kernel_h - 1 - ky) * p.kernel_w + (p.kernel_w - 1 - kx)];
|
139 |
+
}
|
140 |
+
|
141 |
+
sk[ky][kx] = v;
|
142 |
+
}
|
143 |
+
|
144 |
+
for (int loop_major = 0, major_idx = major_idx_base;
|
145 |
+
loop_major < p.loop_major & major_idx < p.major_dim;
|
146 |
+
loop_major++, major_idx++) {
|
147 |
+
for (int loop_x = 0, tile_out_x = tile_out_x_base;
|
148 |
+
loop_x < p.loop_x & tile_out_x < p.out_w;
|
149 |
+
loop_x++, tile_out_x += tile_out_w) {
|
150 |
+
int tile_mid_x = tile_out_x * down_x + up_x - 1 - p.pad_x0;
|
151 |
+
int tile_mid_y = tile_out_y * down_y + up_y - 1 - p.pad_y0;
|
152 |
+
int tile_in_x = floor_div(tile_mid_x, up_x);
|
153 |
+
int tile_in_y = floor_div(tile_mid_y, up_y);
|
154 |
+
|
155 |
+
__syncthreads();
|
156 |
+
|
157 |
+
for (int in_idx = threadIdx.x; in_idx < tile_in_h * tile_in_w;
|
158 |
+
in_idx += blockDim.x) {
|
159 |
+
int rel_in_y = in_idx / tile_in_w;
|
160 |
+
int rel_in_x = in_idx - rel_in_y * tile_in_w;
|
161 |
+
int in_x = rel_in_x + tile_in_x;
|
162 |
+
int in_y = rel_in_y + tile_in_y;
|
163 |
+
|
164 |
+
scalar_t v = 0.0;
|
165 |
+
|
166 |
+
if (in_x >= 0 & in_y >= 0 & in_x < p.in_w & in_y < p.in_h) {
|
167 |
+
v = input[((major_idx * p.in_h + in_y) * p.in_w + in_x) *
|
168 |
+
p.minor_dim +
|
169 |
+
minor_idx];
|
170 |
+
}
|
171 |
+
|
172 |
+
sx[rel_in_y][rel_in_x] = v;
|
173 |
+
}
|
174 |
+
|
175 |
+
__syncthreads();
|
176 |
+
for (int out_idx = threadIdx.x; out_idx < tile_out_h * tile_out_w;
|
177 |
+
out_idx += blockDim.x) {
|
178 |
+
int rel_out_y = out_idx / tile_out_w;
|
179 |
+
int rel_out_x = out_idx - rel_out_y * tile_out_w;
|
180 |
+
int out_x = rel_out_x + tile_out_x;
|
181 |
+
int out_y = rel_out_y + tile_out_y;
|
182 |
+
|
183 |
+
int mid_x = tile_mid_x + rel_out_x * down_x;
|
184 |
+
int mid_y = tile_mid_y + rel_out_y * down_y;
|
185 |
+
int in_x = floor_div(mid_x, up_x);
|
186 |
+
int in_y = floor_div(mid_y, up_y);
|
187 |
+
int rel_in_x = in_x - tile_in_x;
|
188 |
+
int rel_in_y = in_y - tile_in_y;
|
189 |
+
int kernel_x = (in_x + 1) * up_x - mid_x - 1;
|
190 |
+
int kernel_y = (in_y + 1) * up_y - mid_y - 1;
|
191 |
+
|
192 |
+
scalar_t v = 0.0;
|
193 |
+
|
194 |
+
#pragma unroll
|
195 |
+
for (int y = 0; y < kernel_h / up_y; y++)
|
196 |
+
#pragma unroll
|
197 |
+
for (int x = 0; x < kernel_w / up_x; x++)
|
198 |
+
v += sx[rel_in_y + y][rel_in_x + x] *
|
199 |
+
sk[kernel_y + y * up_y][kernel_x + x * up_x];
|
200 |
+
|
201 |
+
if (out_x < p.out_w & out_y < p.out_h) {
|
202 |
+
out[((major_idx * p.out_h + out_y) * p.out_w + out_x) * p.minor_dim +
|
203 |
+
minor_idx] = v;
|
204 |
+
}
|
205 |
+
}
|
206 |
+
}
|
207 |
+
}
|
208 |
+
}
|
209 |
+
|
210 |
+
torch::Tensor upfirdn2d_op(const torch::Tensor &input,
|
211 |
+
const torch::Tensor &kernel, int up_x, int up_y,
|
212 |
+
int down_x, int down_y, int pad_x0, int pad_x1,
|
213 |
+
int pad_y0, int pad_y1) {
|
214 |
+
int curDevice = -1;
|
215 |
+
cudaGetDevice(&curDevice);
|
216 |
+
cudaStream_t stream = at::cuda::getCurrentCUDAStream(curDevice);
|
217 |
+
|
218 |
+
UpFirDn2DKernelParams p;
|
219 |
+
|
220 |
+
auto x = input.contiguous();
|
221 |
+
auto k = kernel.contiguous();
|
222 |
+
|
223 |
+
p.major_dim = x.size(0);
|
224 |
+
p.in_h = x.size(1);
|
225 |
+
p.in_w = x.size(2);
|
226 |
+
p.minor_dim = x.size(3);
|
227 |
+
p.kernel_h = k.size(0);
|
228 |
+
p.kernel_w = k.size(1);
|
229 |
+
p.up_x = up_x;
|
230 |
+
p.up_y = up_y;
|
231 |
+
p.down_x = down_x;
|
232 |
+
p.down_y = down_y;
|
233 |
+
p.pad_x0 = pad_x0;
|
234 |
+
p.pad_x1 = pad_x1;
|
235 |
+
p.pad_y0 = pad_y0;
|
236 |
+
p.pad_y1 = pad_y1;
|
237 |
+
|
238 |
+
p.out_h = (p.in_h * p.up_y + p.pad_y0 + p.pad_y1 - p.kernel_h + p.down_y) /
|
239 |
+
p.down_y;
|
240 |
+
p.out_w = (p.in_w * p.up_x + p.pad_x0 + p.pad_x1 - p.kernel_w + p.down_x) /
|
241 |
+
p.down_x;
|
242 |
+
|
243 |
+
auto out =
|
244 |
+
at::empty({p.major_dim, p.out_h, p.out_w, p.minor_dim}, x.options());
|
245 |
+
|
246 |
+
int mode = -1;
|
247 |
+
|
248 |
+
int tile_out_h = -1;
|
249 |
+
int tile_out_w = -1;
|
250 |
+
|
251 |
+
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 1 && p.down_y == 1 &&
|
252 |
+
p.kernel_h <= 4 && p.kernel_w <= 4) {
|
253 |
+
mode = 1;
|
254 |
+
tile_out_h = 16;
|
255 |
+
tile_out_w = 64;
|
256 |
+
}
|
257 |
+
|
258 |
+
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 1 && p.down_y == 1 &&
|
259 |
+
p.kernel_h <= 3 && p.kernel_w <= 3) {
|
260 |
+
mode = 2;
|
261 |
+
tile_out_h = 16;
|
262 |
+
tile_out_w = 64;
|
263 |
+
}
|
264 |
+
|
265 |
+
if (p.up_x == 2 && p.up_y == 2 && p.down_x == 1 && p.down_y == 1 &&
|
266 |
+
p.kernel_h <= 4 && p.kernel_w <= 4) {
|
267 |
+
mode = 3;
|
268 |
+
tile_out_h = 16;
|
269 |
+
tile_out_w = 64;
|
270 |
+
}
|
271 |
+
|
272 |
+
if (p.up_x == 2 && p.up_y == 2 && p.down_x == 1 && p.down_y == 1 &&
|
273 |
+
p.kernel_h <= 2 && p.kernel_w <= 2) {
|
274 |
+
mode = 4;
|
275 |
+
tile_out_h = 16;
|
276 |
+
tile_out_w = 64;
|
277 |
+
}
|
278 |
+
|
279 |
+
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 2 && p.down_y == 2 &&
|
280 |
+
p.kernel_h <= 4 && p.kernel_w <= 4) {
|
281 |
+
mode = 5;
|
282 |
+
tile_out_h = 8;
|
283 |
+
tile_out_w = 32;
|
284 |
+
}
|
285 |
+
|
286 |
+
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 2 && p.down_y == 2 &&
|
287 |
+
p.kernel_h <= 2 && p.kernel_w <= 2) {
|
288 |
+
mode = 6;
|
289 |
+
tile_out_h = 8;
|
290 |
+
tile_out_w = 32;
|
291 |
+
}
|
292 |
+
|
293 |
+
dim3 block_size;
|
294 |
+
dim3 grid_size;
|
295 |
+
|
296 |
+
if (tile_out_h > 0 && tile_out_w > 0) {
|
297 |
+
p.loop_major = (p.major_dim - 1) / 16384 + 1;
|
298 |
+
p.loop_x = 1;
|
299 |
+
block_size = dim3(32 * 8, 1, 1);
|
300 |
+
grid_size = dim3(((p.out_h - 1) / tile_out_h + 1) * p.minor_dim,
|
301 |
+
(p.out_w - 1) / (p.loop_x * tile_out_w) + 1,
|
302 |
+
(p.major_dim - 1) / p.loop_major + 1);
|
303 |
+
} else {
|
304 |
+
p.loop_major = (p.major_dim - 1) / 16384 + 1;
|
305 |
+
p.loop_x = 4;
|
306 |
+
block_size = dim3(4, 32, 1);
|
307 |
+
grid_size = dim3((p.out_h * p.minor_dim - 1) / block_size.x + 1,
|
308 |
+
(p.out_w - 1) / (p.loop_x * block_size.y) + 1,
|
309 |
+
(p.major_dim - 1) / p.loop_major + 1);
|
310 |
+
}
|
311 |
+
|
312 |
+
AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "upfirdn2d_cuda", [&] {
|
313 |
+
switch (mode) {
|
314 |
+
case 1:
|
315 |
+
upfirdn2d_kernel<scalar_t, 1, 1, 1, 1, 4, 4, 16, 64>
|
316 |
+
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
|
317 |
+
x.data_ptr<scalar_t>(),
|
318 |
+
k.data_ptr<scalar_t>(), p);
|
319 |
+
|
320 |
+
break;
|
321 |
+
|
322 |
+
case 2:
|
323 |
+
upfirdn2d_kernel<scalar_t, 1, 1, 1, 1, 3, 3, 16, 64>
|
324 |
+
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
|
325 |
+
x.data_ptr<scalar_t>(),
|
326 |
+
k.data_ptr<scalar_t>(), p);
|
327 |
+
|
328 |
+
break;
|
329 |
+
|
330 |
+
case 3:
|
331 |
+
upfirdn2d_kernel<scalar_t, 2, 2, 1, 1, 4, 4, 16, 64>
|
332 |
+
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
|
333 |
+
x.data_ptr<scalar_t>(),
|
334 |
+
k.data_ptr<scalar_t>(), p);
|
335 |
+
|
336 |
+
break;
|
337 |
+
|
338 |
+
case 4:
|
339 |
+
upfirdn2d_kernel<scalar_t, 2, 2, 1, 1, 2, 2, 16, 64>
|
340 |
+
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
|
341 |
+
x.data_ptr<scalar_t>(),
|
342 |
+
k.data_ptr<scalar_t>(), p);
|
343 |
+
|
344 |
+
break;
|
345 |
+
|
346 |
+
case 5:
|
347 |
+
upfirdn2d_kernel<scalar_t, 1, 1, 2, 2, 4, 4, 8, 32>
|
348 |
+
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
|
349 |
+
x.data_ptr<scalar_t>(),
|
350 |
+
k.data_ptr<scalar_t>(), p);
|
351 |
+
|
352 |
+
break;
|
353 |
+
|
354 |
+
case 6:
|
355 |
+
upfirdn2d_kernel<scalar_t, 1, 1, 2, 2, 4, 4, 8, 32>
|
356 |
+
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
|
357 |
+
x.data_ptr<scalar_t>(),
|
358 |
+
k.data_ptr<scalar_t>(), p);
|
359 |
+
|
360 |
+
break;
|
361 |
+
|
362 |
+
default:
|
363 |
+
upfirdn2d_kernel_large<scalar_t><<<grid_size, block_size, 0, stream>>>(
|
364 |
+
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(),
|
365 |
+
k.data_ptr<scalar_t>(), p);
|
366 |
+
}
|
367 |
+
});
|
368 |
+
|
369 |
+
return out;
|
370 |
+
}
|