|
import gradio as gr |
|
import json |
|
import torch |
|
import time |
|
import random |
|
try: |
|
|
|
import spaces |
|
is_space_imported = True |
|
except ImportError: |
|
is_space_imported = False |
|
|
|
from tqdm import tqdm |
|
from huggingface_hub import snapshot_download |
|
from models import AudioDiffusion, DDPMScheduler |
|
from audioldm.audio.stft import TacotronSTFT |
|
from audioldm.variational_autoencoder import AutoencoderKL |
|
|
|
max_64_bit_int = 2**63 - 1 |
|
|
|
|
|
if torch.cuda.is_available(): |
|
device_type = "cuda" |
|
device_selection = "cuda:0" |
|
else: |
|
device_type = "cpu" |
|
device_selection = "cpu" |
|
|
|
class Tango: |
|
def __init__(self, name = "declare-lab/tango2", device = device_selection): |
|
|
|
path = snapshot_download(repo_id = name) |
|
|
|
vae_config = json.load(open("{}/vae_config.json".format(path))) |
|
stft_config = json.load(open("{}/stft_config.json".format(path))) |
|
main_config = json.load(open("{}/main_config.json".format(path))) |
|
|
|
self.vae = AutoencoderKL(**vae_config).to(device) |
|
self.stft = TacotronSTFT(**stft_config).to(device) |
|
self.model = AudioDiffusion(**main_config).to(device) |
|
|
|
vae_weights = torch.load("{}/pytorch_model_vae.bin".format(path), map_location = device) |
|
stft_weights = torch.load("{}/pytorch_model_stft.bin".format(path), map_location = device) |
|
main_weights = torch.load("{}/pytorch_model_main.bin".format(path), map_location = device) |
|
|
|
self.vae.load_state_dict(vae_weights) |
|
self.stft.load_state_dict(stft_weights) |
|
self.model.load_state_dict(main_weights) |
|
|
|
print ("Successfully loaded checkpoint from:", name) |
|
|
|
self.vae.eval() |
|
self.stft.eval() |
|
self.model.eval() |
|
|
|
self.scheduler = DDPMScheduler.from_pretrained(main_config["scheduler_name"], subfolder = "scheduler") |
|
|
|
def chunks(self, lst, n): |
|
|
|
for i in range(0, len(lst), n): |
|
yield lst[i:i + n] |
|
|
|
def generate(self, prompt, steps = 100, guidance = 3, samples = 1, disable_progress = True): |
|
|
|
with torch.no_grad(): |
|
latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress = disable_progress) |
|
mel = self.vae.decode_first_stage(latents) |
|
wave = self.vae.decode_to_waveform(mel) |
|
return wave |
|
|
|
def generate_for_batch(self, prompts, steps = 200, guidance = 3, samples = 1, batch_size = 8, disable_progress = True): |
|
|
|
outputs = [] |
|
for k in tqdm(range(0, len(prompts), batch_size)): |
|
batch = prompts[k: k + batch_size] |
|
with torch.no_grad(): |
|
latents = self.model.inference(batch, self.scheduler, steps, guidance, samples, disable_progress = disable_progress) |
|
mel = self.vae.decode_first_stage(latents) |
|
wave = self.vae.decode_to_waveform(mel) |
|
outputs += [item for item in wave] |
|
if samples == 1: |
|
return outputs |
|
return list(self.chunks(outputs, samples)) |
|
|
|
|
|
|
|
tango = Tango(device = "cpu") |
|
tango.vae.to(device_type) |
|
tango.stft.to(device_type) |
|
tango.model.to(device_type) |
|
|
|
def update_seed(is_randomize_seed, seed): |
|
if is_randomize_seed: |
|
return random.randint(0, max_64_bit_int) |
|
return seed |
|
|
|
def check( |
|
prompt, |
|
output_number, |
|
steps, |
|
guidance, |
|
is_randomize_seed, |
|
seed |
|
): |
|
if prompt is None or prompt == "": |
|
raise gr.Error("Please provide a prompt input.") |
|
if not output_number in [1, 2, 3]: |
|
raise gr.Error("Please ask for 1, 2 or 3 output files.") |
|
|
|
def update_output(output_format, output_number): |
|
return [ |
|
gr.update(format = output_format), |
|
gr.update(format = output_format, visible = (2 <= output_number)), |
|
gr.update(format = output_format, visible = (output_number == 3)), |
|
gr.update(visible = False) |
|
] |
|
|
|
def text2audio( |
|
prompt, |
|
output_number, |
|
steps, |
|
guidance, |
|
is_randomize_seed, |
|
seed |
|
): |
|
start = time.time() |
|
|
|
if seed is None: |
|
seed = random.randint(0, max_64_bit_int) |
|
|
|
random.seed(seed) |
|
torch.manual_seed(seed) |
|
|
|
output_wave = tango.generate(prompt, steps, guidance, output_number) |
|
|
|
output_wave_1 = gr.make_waveform((16000, output_wave[0])) |
|
output_wave_2 = gr.make_waveform((16000, output_wave[1])) if (2 <= output_number) else None |
|
output_wave_3 = gr.make_waveform((16000, output_wave[2])) if (output_number == 3) else None |
|
|
|
end = time.time() |
|
secondes = int(end - start) |
|
minutes = secondes // 60 |
|
secondes = secondes - (minutes * 60) |
|
hours = minutes // 60 |
|
minutes = minutes - (hours * 60) |
|
return [ |
|
output_wave_1, |
|
output_wave_2, |
|
output_wave_3, |
|
gr.update(visible = True, value = "Start again to get a different result. The output have been generated in " + ((str(hours) + " h, ") if hours != 0 else "") + ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + str(secondes) + " sec.") |
|
] |
|
|
|
if is_space_imported: |
|
text2audio = spaces.GPU(text2audio, duration = 420) |
|
|
|
|
|
with gr.Blocks() as interface: |
|
gr.Markdown(""" |
|
<p style="text-align: center;"> |
|
<b><big><big><big>Text-to-Audio</big></big></big></b> |
|
<br/>Generates 10 seconds of sound effects from description, freely, without account, without watermark |
|
</p> |
|
<br/> |
|
<br/> |
|
β¨ Powered by <i>Tango 2</i> AI. |
|
<br/> |
|
<ul> |
|
<li>If you need <b>47 seconds</b> of audio, I recommend to use <i>Stable Audio</i>,</li> |
|
<li>If you need to generate <b>music</b>, I recommend to use <i>MusicGen</i>,</li> |
|
</ul> |
|
<br/> |
|
""" + ("πββοΈ Estimated time: few minutes. Current device: GPU." if torch.cuda.is_available() else "π Slow process... ~5 min. Current device: CPU.") + """ |
|
Your computer must <b><u>not</u></b> enter into standby mode.<br/>You can duplicate this space on a free account, it's designed to work on CPU, GPU and ZeroGPU.<br/> |
|
<a href='https://huggingface.co/spaces/Fabrice-TIERCELIN/Text-to-Audio?duplicate=true&hidden=public&hidden=public'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a> |
|
<br/> |
|
βοΈ You can use, modify and share the generated sounds but not for commercial uses. |
|
""" |
|
) |
|
input_text = gr.Textbox(label = "Prompt", value = "Snort of a horse", lines = 2, autofocus = True) |
|
with gr.Accordion("Advanced options", open = False): |
|
output_format = gr.Radio(label = "Output format", info = "The file you can dowload", choices = ["mp3", "wav"], value = "wav") |
|
output_number = gr.Slider(label = "Number of generations", info = "1, 2 or 3 output files", minimum = 1, maximum = 3, value = 1, step = 1, interactive = True) |
|
denoising_steps = gr.Slider(label = "Steps", info = "lower=faster & variant, higher=audio quality & similar", minimum = 10, maximum = 200, value = 10, step = 1, interactive = True) |
|
guidance_scale = gr.Slider(label = "Guidance Scale", info = "lower=audio quality, higher=follow the prompt", minimum = 1, maximum = 10, value = 3, step = 0.1, interactive = True) |
|
randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed", value = True, info = "If checked, result is always different") |
|
seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed") |
|
|
|
submit = gr.Button("π Generate", variant = "primary") |
|
|
|
output_audio_1 = gr.Audio(label = "Generated Audio #1/3", format = "wav", type="numpy", autoplay = True) |
|
output_audio_2 = gr.Audio(label = "Generated Audio #2/3", format = "wav", type="numpy") |
|
output_audio_3 = gr.Audio(label = "Generated Audio #3/3", format = "wav", type="numpy") |
|
information = gr.Label(label = "Information") |
|
|
|
submit.click(fn = update_seed, inputs = [ |
|
randomize_seed, |
|
seed |
|
], outputs = [ |
|
seed |
|
], queue = False, show_progress = False).then(fn = check, inputs = [ |
|
input_text, |
|
output_number, |
|
denoising_steps, |
|
guidance_scale, |
|
randomize_seed, |
|
seed |
|
], outputs = [], queue = False, show_progress = False).success(fn = update_output, inputs = [ |
|
output_format, |
|
output_number |
|
], outputs = [ |
|
output_audio_1, |
|
output_audio_2, |
|
output_audio_3, |
|
information |
|
], queue = False, show_progress = False).success(fn = text2audio, inputs = [ |
|
input_text, |
|
output_number, |
|
denoising_steps, |
|
guidance_scale, |
|
randomize_seed, |
|
seed |
|
], outputs = [ |
|
output_audio_1, |
|
output_audio_2, |
|
output_audio_3, |
|
information |
|
], scroll_to_output = True) |
|
|
|
gr.Examples( |
|
fn = text2audio, |
|
inputs = [ |
|
input_text, |
|
output_number, |
|
denoising_steps, |
|
guidance_scale, |
|
randomize_seed, |
|
seed |
|
], |
|
outputs = [ |
|
output_audio_1, |
|
output_audio_2, |
|
output_audio_3, |
|
information |
|
], |
|
examples = [ |
|
["A hammer is hitting a wooden surface", 3, 100, 3, False, 123], |
|
["Peaceful and calming ambient music with singing bowl and other instruments.", 3, 100, 3, False, 123], |
|
["A man is speaking in a small room.", 2, 100, 3, False, 123], |
|
["A female is speaking followed by footstep sound", 1, 100, 3, False, 123], |
|
["Wooden table tapping sound followed by water pouring sound.", 3, 200, 3, False, 123], |
|
], |
|
cache_examples = "lazy" if is_space_imported else False, |
|
) |
|
|
|
gr.Markdown( |
|
""" |
|
## How to prompt your sound |
|
You can use round brackets to increase the importance of a part: |
|
``` |
|
Peaceful and (calming) ambient music with singing bowl and other instruments |
|
``` |
|
You can use several levels of round brackets to even more increase the importance of a part: |
|
``` |
|
(Peaceful) and ((calming)) ambient music with singing bowl and other instruments |
|
``` |
|
You can use number instead of several round brackets: |
|
``` |
|
(Peaceful:1.5) and ((calming)) ambient music with singing bowl and other instruments |
|
``` |
|
You can do the same thing with square brackets to decrease the importance of a part: |
|
``` |
|
(Peaceful:1.5) and ((calming)) ambient music with [singing:2] bowl and other instruments |
|
""" |
|
) |
|
|
|
if __name__ == "__main__": |
|
interface.launch(share = False) |