import os from contextlib import contextmanager import warnings import math import torch # configuration for bitsandbytes before import os.environ["BITSANDBYTES_NOWELCOME"] = "1" warnings.filterwarnings( "ignore", message="MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization" ) warnings.filterwarnings( "ignore", message="MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization" ) warnings.filterwarnings( "ignore", message="The installed version of bitsandbytes was compiled without GPU support. 8-bit optimizers and GPU quantization are unavailable." ) try: import bitsandbytes as bnb # noqa: E402 except: bnb = None if bnb is not None: class Linear8bitLt(bnb.nn.Linear8bitLt): """Wraps `bnb.nn.Linear8bitLt` and enables instantiation directly on the device and re-quantizaton when loading the state dict. This should only be used for inference. For training, use `bnb.nn.Linear8bitLt` directly. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs, has_fp16_weights=False, threshold=6.0) # We quantize the initial weight here so we don't end up filling the device # memory with float32 weights which could lead to OOM. self._quantize_weight(self.weight.data) def _load_from_state_dict(self, local_state_dict, *args, **kwargs): # There is only one key that ends with `*.weight`, the other one is the bias weight_key = next((name for name in local_state_dict.keys() if name.endswith("weight")), None) if weight_key is None: return # Load the weight from the state dict and re-quantize it weight = local_state_dict.pop(weight_key) self._quantize_weight(weight) # If there is a bias, let nn.Module load it if local_state_dict: super()._load_from_state_dict(local_state_dict, *args, **kwargs) def _quantize_weight(self, weight: torch.Tensor) -> None: # This code is taken and adapted from `bnb.nn.Int8Params.cuda()` B = weight.contiguous().half().cuda() CB, CBt, SCB, SCBt, coo_tensorB = bnb.functional.double_quant(B) del CBt del SCBt self.weight.data = CB setattr(self.weight, "CB", CB) setattr(self.weight, "SCB", SCB) # for correctness but with terrible perf class ColBlockQuantizedLinear(torch.nn.Module): def __init__(self, in_features, out_features, bias: bool, *, bits, tile_cols): super().__init__() self.in_features = in_features self.out_features = out_features self.tile_cols = tile_cols if tile_cols != -1 else self.in_features self.bits = bits self.entries_per_byte = 8 // bits assert self.entries_per_byte > 0 and self.entries_per_byte * self.bits == 8 assert in_features % self.entries_per_byte == 0 self.register_buffer("quant_weight", torch.empty((self.out_features, self.in_features // self.entries_per_byte), dtype=torch.uint8)) self.register_buffer("scales", torch.empty((self.out_features, (self.in_features + self.tile_cols - 1) // self.tile_cols))) self.register_buffer("zeros", torch.empty_like(self.scales)) assert isinstance(bias, bool) if bias: self.register_buffer("bias", torch.empty((self.out_features,))) else: self.register_buffer("bias", None) def pack_weight(self, weight): weight = weight.to(device=self.quant_weight.device, copy=True) for j in range(self.scales.size(1)): weight[:, j * self.tile_cols: (j + 1) * self.tile_cols] /= self.scales[: , j: j+1] weight[:, j * self.tile_cols: (j + 1) * self.tile_cols] += self.zeros[: , j: j+1] weight = weight.clamp_(min=0, max=2 ** self.bits - 1).to(dtype=torch.uint8) self.quant_weight.zero_() for nr in range(self.entries_per_byte): self.quant_weight += weight[:, nr::self.entries_per_byte] << (nr * self.bits) def get_weight(self, dtype=torch.float): weight = torch.empty((self.out_features, self.in_features), device=self.quant_weight.device, dtype=dtype) mask = (1<> (nr * self.bits)) & mask).float() self.quant_weight.to(dtype) for j in range(self.scales.size(1)): weight[:, j * self.tile_cols: (j + 1) * self.tile_cols] -= self.zeros[: , j: j+1] weight[:, j * self.tile_cols: (j + 1) * self.tile_cols] *= self.scales[: , j: j+1] return weight def forward(self, inp): weight = self.get_weight(dtype=inp.dtype) return torch.nn.functional.linear(inp, weight, self.bias) class GPTQQuantizer: # The algorithm and code has been taken from https://github.com/IST-DASLab/gptq/ # E. Frantar et al GPTQ: Accurate Post-training Compression for GPT, arXiv:2210.17323 # portions copyright by the authors licensed under the Apache License 2.0 # All errors are our own. def __init__(self, linear_module, *, bits, perchannel=True, sym=False, blocksize=128, percdamp=.01, groupsize=-1, actorder=False): assert isinstance(linear_module, torch.nn.Linear) self.linear_module = linear_module self.dev = self.linear_module.weight.device self.rows = linear_module.weight.shape[0] self.columns = linear_module.weight.shape[1] self.H = torch.zeros((self.columns, self.columns), device=self.dev) self.nsamples = 0 self.bits = bits self.maxq = 2 ** bits - 1 self.perchannel = perchannel self.sym = sym self.blocksize = blocksize self.percdamp = percdamp self.groupsize = groupsize self.actorder = actorder self.tile_cols = self.columns if groupsize == -1 else groupsize self.scales = torch.zeros((self.rows, (self.columns + self.tile_cols - 1) // self.tile_cols), dtype=self.linear_module.weight.dtype, device = self.dev) self.zeros = torch.zeros_like(self.scales) assert not (self.actorder and self.groupsize != -1), "The permutation trick does not work for grouped quantization" @staticmethod def quantize_weight(x, scale, zero, maxq): q = torch.clamp(torch.round(x / scale) + zero, 0, maxq) x_rec = scale * (q - zero) return x_rec def find_params_weight(self, x): dev = x.device shape = x.shape if self.perchannel: x = x.flatten(1) else: x = x.flatten().unsqueeze(0) tmp = torch.zeros(x.shape[0], device=dev) xmin = torch.minimum(x.min(1)[0], tmp) xmax = torch.maximum(x.max(1)[0], tmp) if self.sym: xmax = torch.maximum(torch.abs(xmin), xmax) tmp = xmin < 0 if torch.any(tmp): xmin[tmp] = -xmax[tmp] tmp = (xmin == 0) & (xmax == 0) xmin[tmp] = -1 xmax[tmp] = +1 scale = (xmax - xmin) / self.maxq if self.sym: zero = torch.full_like(scale, (self.maxq + 1) / 2) else: zero = torch.round(-xmin / scale) if not self.perchannel: tmp = shape[0] scale = scale.repeat(tmp) zero = zero.repeat(tmp) shape = [-1] + [1] * (len(shape) - 1) scale = scale.reshape(shape) zero = zero.reshape(shape) return scale, zero def collect_input_stats(self, _1, inp, _2): inp = inp[0].detach() self.last_inp = inp if len(inp.shape) == 2: inp = inp.unsqueeze(0) tmp = inp.shape[0] if len(inp.shape) == 3: inp = inp.reshape((-1, inp.shape[-1])) inp = inp.t() self.H *= self.nsamples / (self.nsamples + tmp) self.nsamples += tmp # inp = inp.float() inp = math.sqrt(2 / self.nsamples) * inp.float() # self.H += 2 / self.nsamples * inp.matmul(inp.t()) self.H += inp.matmul(inp.t()) def quantize(self): W = self.linear_module.weight.detach().to(dtype=torch.float, copy=True) scale, zero = self.find_params_weight(W) self.scales[:] = scale self.zeros[:] = zero H = self.H del self.H dead = torch.diag(H) == 0 H[dead, dead] = 1 W[:, dead] = 0 if self.actorder: perm = torch.argsort(torch.diag(H), descending=True) W = W[:, perm] H = H[perm][:, perm] Losses = torch.zeros_like(W) Q = torch.zeros_like(W) damp = self.percdamp * torch.mean(torch.diag(H)) diag = torch.arange(self.columns, device=self.dev) H[diag, diag] += damp H = torch.linalg.cholesky(H) H = torch.cholesky_inverse(H) H = torch.linalg.cholesky(H, upper=True) Hinv = H for i1 in range(0, self.columns, self.blocksize): i2 = min(i1 + self.blocksize, self.columns) count = i2 - i1 W1 = W[:, i1:i2].clone() Q1 = torch.zeros_like(W1) Err1 = torch.zeros_like(W1) Losses1 = torch.zeros_like(W1) Hinv1 = Hinv[i1:i2, i1:i2] for i in range(count): w = W1[:, i] d = Hinv1[i, i] if self.groupsize != -1: if (i1 + i) % self.groupsize == 0: scale, zero = self.find_params_weight(W[:, (i1 + i):(i1 + i + self.groupsize)]) self.scales[:, (i1 + i) // self.groupsize] = scale self.zeros[:, (i1 + i) // self.groupsize] = zeros q = self.quantize_weight( w.unsqueeze(1), scale, zero, self.maxq ) q = q.squeeze(1) assert q.dim() == 1 Q1[:, i] = q Losses1[:, i] = (w - q) ** 2 / d ** 2 err1 = (w - q) / d W1[:, i:] -= err1.unsqueeze(1).matmul(Hinv1[i, i:].unsqueeze(0)) Err1[:, i] = err1 Q[:, i1:i2] = Q1 Losses[:, i1:i2] = Losses1 / 2 W[:, i2:] -= Err1.matmul(Hinv[i1:i2, i2:]) if self.actorder: invperm = torch.argsort(perm) Q = Q[:, invperm] weight = Q.reshape(self.linear_module.weight.shape).to(self.linear_module.weight.data.dtype) error = torch.sum(Losses).item() q_module = ColBlockQuantizedLinear(self.linear_module.in_features, self.linear_module.out_features, self.linear_module.bias is not None, bits=self.bits, tile_cols=self.groupsize).to(self.dev) q_module.scales = self.scales q_module.zeros = self.zeros q_module.pack_weight(weight) q_module.bias = self.linear_module.bias return q_module, error