MotionCLR / options /evaluate_options.py
EvanTHU's picture
init demo
b887ad8 verified
raw
history blame
3.38 kB
import argparse
from .get_opt import get_opt
import yaml
class TestOptions():
def __init__(self):
self.parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
self.initialize()
def initialize(self):
self.parser.add_argument("--opt_path", type=str, default='./checkpoints/t2m/t2m_condunet1d_batch64/opt.txt',help='option file path for loading model')
self.parser.add_argument("--gpu_id", type=int, default=0, help='GPU id')
# evaluator
self.parser.add_argument("--evaluator_dir", type=str, default='./data/checkpoints', help='Directory path where save T2M evaluator\'s checkpoints')
self.parser.add_argument("--eval_meta_dir", type=str, default='./data', help='Directory path where save T2M evaluator\'s normalization data.')
self.parser.add_argument("--glove_dir",type=str,default='./data/glove', help='Directory path where save glove')
# inference
self.parser.add_argument("--num_inference_steps", type=int, default=10, help='Number of iterative denoising steps during inference.')
self.parser.add_argument("--which_ckpt", type=str, default='latest', help='name of checkpoint to load')
self.parser.add_argument("--diffuser_name", type=str, default='dpmsolver', help='sampler\'s scheduler class name in the diffuser library')
self.parser.add_argument("--no_ema", action="store_true", help='Where use EMA model in inference')
self.parser.add_argument("--no_fp16", action="store_true", help='Whether use FP16 in inference')
self.parser.add_argument('--debug', action="store_true", help='debug mode')
self.parser.add_argument('--self_attention', action="store_true", help='self_attention use or not')
self.parser.add_argument('--no_eff', action='store_true', help='whether use efficient linear attention')
self.parser.add_argument('--vis_attn', action='store_true', help='vis attention value or not')
self.parser.add_argument('--dropout', type=float, default=0.1, help='dropout')
# evaluation
self.parser.add_argument("--replication_times", type=int, default=1, help='Number of generation rounds for each text description')
self.parser.add_argument('--batch_size', type=int, default=32, help='Batch size for eval')
self.parser.add_argument('--diversity_times', type=int, default=300, help='')
self.parser.add_argument('--mm_num_samples', type=int, default=100, help='Number of samples for evaluating multimodality')
self.parser.add_argument('--mm_num_repeats', type=int, default=30, help='Number of generation rounds for each text description when evaluating multimodality')
self.parser.add_argument('--mm_num_times', type=int, default=10, help='')
self.parser.add_argument('--edit_mode', action='store_true', help='editing mode')
def parse(self):
# load evaluation options
self.opt = self.parser.parse_args()
opt_dict = vars(self.opt)
# load the model options of T2m evaluator
with open('./config/evaluator.yaml', 'r') as yaml_file:
yaml_config = yaml.safe_load(yaml_file)
opt_dict.update(yaml_config)
# load the training options of the selected checkpoint
get_opt(self.opt, self.opt.opt_path)
return self.opt