Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
from .get_opt import get_opt | |
import yaml | |
class TestOptions(): | |
def __init__(self): | |
self.parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
self.initialize() | |
def initialize(self): | |
self.parser.add_argument("--opt_path", type=str, default='./checkpoints/t2m/t2m_condunet1d_batch64/opt.txt',help='option file path for loading model') | |
self.parser.add_argument("--gpu_id", type=int, default=0, help='GPU id') | |
# evaluator | |
self.parser.add_argument("--evaluator_dir", type=str, default='./data/checkpoints', help='Directory path where save T2M evaluator\'s checkpoints') | |
self.parser.add_argument("--eval_meta_dir", type=str, default='./data', help='Directory path where save T2M evaluator\'s normalization data.') | |
self.parser.add_argument("--glove_dir",type=str,default='./data/glove', help='Directory path where save glove') | |
# inference | |
self.parser.add_argument("--num_inference_steps", type=int, default=10, help='Number of iterative denoising steps during inference.') | |
self.parser.add_argument("--which_ckpt", type=str, default='latest', help='name of checkpoint to load') | |
self.parser.add_argument("--diffuser_name", type=str, default='dpmsolver', help='sampler\'s scheduler class name in the diffuser library') | |
self.parser.add_argument("--no_ema", action="store_true", help='Where use EMA model in inference') | |
self.parser.add_argument("--no_fp16", action="store_true", help='Whether use FP16 in inference') | |
self.parser.add_argument('--debug', action="store_true", help='debug mode') | |
self.parser.add_argument('--self_attention', action="store_true", help='self_attention use or not') | |
self.parser.add_argument('--no_eff', action='store_true', help='whether use efficient linear attention') | |
self.parser.add_argument('--vis_attn', action='store_true', help='vis attention value or not') | |
self.parser.add_argument('--dropout', type=float, default=0.1, help='dropout') | |
# evaluation | |
self.parser.add_argument("--replication_times", type=int, default=1, help='Number of generation rounds for each text description') | |
self.parser.add_argument('--batch_size', type=int, default=32, help='Batch size for eval') | |
self.parser.add_argument('--diversity_times', type=int, default=300, help='') | |
self.parser.add_argument('--mm_num_samples', type=int, default=100, help='Number of samples for evaluating multimodality') | |
self.parser.add_argument('--mm_num_repeats', type=int, default=30, help='Number of generation rounds for each text description when evaluating multimodality') | |
self.parser.add_argument('--mm_num_times', type=int, default=10, help='') | |
self.parser.add_argument('--edit_mode', action='store_true', help='editing mode') | |
def parse(self): | |
# load evaluation options | |
self.opt = self.parser.parse_args() | |
opt_dict = vars(self.opt) | |
# load the model options of T2m evaluator | |
with open('./config/evaluator.yaml', 'r') as yaml_file: | |
yaml_config = yaml.safe_load(yaml_file) | |
opt_dict.update(yaml_config) | |
# load the training options of the selected checkpoint | |
get_opt(self.opt, self.opt.opt_path) | |
return self.opt |