File size: 8,504 Bytes
b887ad8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import torch
import time
import torch.optim as optim
from collections import OrderedDict
from utils.utils import print_current_loss
from os.path import join as pjoin

from diffusers import DDPMScheduler
from torch.utils.tensorboard import SummaryWriter
import time
import pdb
import sys
import os
from torch.optim.lr_scheduler import ExponentialLR


class DDPMTrainer(object):

    def __init__(self, args, model, accelerator, model_ema=None):
        self.opt = args
        self.accelerator = accelerator
        self.device = self.accelerator.device
        self.model = model
        self.diffusion_steps = args.diffusion_steps
        self.noise_scheduler = DDPMScheduler(
            num_train_timesteps=self.diffusion_steps,
            beta_schedule=args.beta_schedule,
            variance_type="fixed_small",
            prediction_type=args.prediction_type,
            clip_sample=False,
        )
        self.model_ema = model_ema
        if args.is_train:
            self.mse_criterion = torch.nn.MSELoss(reduction="none")

        accelerator.print("Diffusion_config:\n", self.noise_scheduler.config)

        if self.accelerator.is_main_process:
            starttime = time.strftime("%Y-%m-%d_%H:%M:%S")
            print("Start experiment:", starttime)
            self.writer = SummaryWriter(
                log_dir=pjoin(args.save_root, "logs_") + starttime[:16],
                comment=starttime[:16],
                flush_secs=60,
            )
        self.accelerator.wait_for_everyone()

        self.optimizer = optim.AdamW(
            self.model.parameters(), lr=self.opt.lr, weight_decay=self.opt.weight_decay
        )
        self.scheduler = (
            ExponentialLR(self.optimizer, gamma=args.decay_rate)
            if args.decay_rate > 0
            else None
        )

    @staticmethod
    def zero_grad(opt_list):
        for opt in opt_list:
            opt.zero_grad()

    def clip_norm(self, network_list):
        for network in network_list:
            self.accelerator.clip_grad_norm_(
                network.parameters(), self.opt.clip_grad_norm
            )  # 0.5 -> 1

    @staticmethod
    def step(opt_list):
        for opt in opt_list:
            opt.step()

    def forward(self, batch_data):
        caption, motions, m_lens = batch_data
        motions = motions.detach().float()

        x_start = motions
        B, T = x_start.shape[:2]
        cur_len = torch.LongTensor([min(T, m_len) for m_len in m_lens]).to(self.device)
        self.src_mask = self.generate_src_mask(T, cur_len).to(x_start.device)

        # 1. Sample noise that we'll add to the motion
        real_noise = torch.randn_like(x_start)

        # 2. Sample a random timestep for each motion
        t = torch.randint(0, self.diffusion_steps, (B,), device=self.device)
        self.timesteps = t

        # 3. Add noise to the motion according to the noise magnitude at each timestep
        # (this is the forward diffusion process)
        x_t = self.noise_scheduler.add_noise(x_start, real_noise, t)

        # 4. network prediction
        self.prediction = self.model(x_t, t, text=caption)

        if self.opt.prediction_type == "sample":
            self.target = x_start
        elif self.opt.prediction_type == "epsilon":
            self.target = real_noise
        elif self.opt.prediction_type == "v_prediction":
            self.target = self.noise_scheduler.get_velocity(x_start, real_noise, t)

    def masked_l2(self, a, b, mask, weights):

        loss = self.mse_criterion(a, b).mean(dim=-1)  # (bath_size, motion_length)

        loss = (loss * mask).sum(-1) / mask.sum(-1)  # (batch_size, )

        loss = (loss * weights).mean()

        return loss

    def backward_G(self):
        loss_logs = OrderedDict({})
        mse_loss_weights = torch.ones_like(self.timesteps)
        loss_logs["loss_mot_rec"] = self.masked_l2(
            self.prediction, self.target, self.src_mask, mse_loss_weights
        )

        self.loss = loss_logs["loss_mot_rec"]

        return loss_logs

    def update(self):
        self.zero_grad([self.optimizer])
        loss_logs = self.backward_G()
        self.accelerator.backward(self.loss)
        self.clip_norm([self.model])
        self.step([self.optimizer])

        return loss_logs

    def generate_src_mask(self, T, length):
        B = len(length)
        src_mask = torch.ones(B, T)
        for i in range(B):
            for j in range(length[i], T):
                src_mask[i, j] = 0
        return src_mask

    def train_mode(self):
        self.model.train()
        if self.model_ema:
            self.model_ema.train()

    def eval_mode(self):
        self.model.eval()
        if self.model_ema:
            self.model_ema.eval()

    def save(self, file_name, total_it):
        state = {
            "opt_encoder": self.optimizer.state_dict(),
            "total_it": total_it,
            "encoder": self.accelerator.unwrap_model(self.model).state_dict(),
        }
        if self.model_ema:
            state["model_ema"] = self.accelerator.unwrap_model(
                self.model_ema
            ).module.state_dict()
        torch.save(state, file_name)
        return

    def load(self, model_dir):
        checkpoint = torch.load(model_dir, map_location=self.device)
        self.optimizer.load_state_dict(checkpoint["opt_encoder"])
        if self.model_ema:
            self.model_ema.load_state_dict(checkpoint["model_ema"], strict=True)
        self.model.load_state_dict(checkpoint["encoder"], strict=True)

        return checkpoint.get("total_it", 0)

    def train(self, train_loader):

        it = 0
        if self.opt.is_continue:
            model_path = pjoin(self.opt.model_dir, self.opt.continue_ckpt)
            it = self.load(model_path)
            self.accelerator.print(f"continue train from  {it} iters in {model_path}")
        start_time = time.time()

        logs = OrderedDict()
        self.dataset = train_loader.dataset
        self.model, self.mse_criterion, self.optimizer, train_loader, self.model_ema = (
            self.accelerator.prepare(
                self.model,
                self.mse_criterion,
                self.optimizer,
                train_loader,
                self.model_ema,
            )
        )

        num_epochs = (self.opt.num_train_steps - it) // len(train_loader) + 1
        self.accelerator.print(f"need to train for {num_epochs} epochs....")

        for epoch in range(0, num_epochs):
            self.train_mode()
            for i, batch_data in enumerate(train_loader):
                self.forward(batch_data)
                log_dict = self.update()
                it += 1

                if self.model_ema and it % self.opt.model_ema_steps == 0:
                    self.accelerator.unwrap_model(self.model_ema).update_parameters(
                        self.model
                    )

                # update logger
                for k, v in log_dict.items():
                    if k not in logs:
                        logs[k] = v
                    else:
                        logs[k] += v

                if it % self.opt.log_every == 0:
                    mean_loss = OrderedDict({})
                    for tag, value in logs.items():
                        mean_loss[tag] = value / self.opt.log_every
                    logs = OrderedDict()
                    print_current_loss(
                        self.accelerator, start_time, it, mean_loss, epoch, inner_iter=i
                    )
                    if self.accelerator.is_main_process:
                        self.writer.add_scalar("loss", mean_loss["loss_mot_rec"], it)
                    self.accelerator.wait_for_everyone()

                if (
                    it % self.opt.save_interval == 0
                    and self.accelerator.is_main_process
                ): # Save model
                    self.save(pjoin(self.opt.model_dir, "latest.tar").format(it), it)
                self.accelerator.wait_for_everyone()

                if (self.scheduler is not None) and (
                    it % self.opt.update_lr_steps == 0
                ):
                    self.scheduler.step()

        # Save the last checkpoint if it wasn't already saved.
        if it % self.opt.save_interval != 0 and self.accelerator.is_main_process:
            self.save(pjoin(self.opt.model_dir, "latest.tar"), it)

        self.accelerator.wait_for_everyone()
        self.accelerator.print("FINISH")