File size: 8,576 Bytes
b887ad8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import torch
from utils.word_vectorizer import WordVectorizer
from torch.utils.data import Dataset, DataLoader
from os.path import join as pjoin
from tqdm import tqdm
import numpy as np
from eval.evaluator_modules import *

from torch.utils.data._utils.collate import default_collate


class GeneratedDataset(Dataset):
    """
    opt.dataset_name
    opt.max_motion_length
    opt.unit_length
    """

    def __init__(
        self, opt, pipeline, dataset, w_vectorizer, mm_num_samples, mm_num_repeats
    ):
        assert mm_num_samples < len(dataset)
        self.dataset = dataset
        dataloader = DataLoader(dataset, batch_size=1, num_workers=1, shuffle=True)
        generated_motion = []
        min_mov_length = 10 if opt.dataset_name == "t2m" else 6

        # Pre-process all target captions
        mm_generated_motions = []
        if mm_num_samples > 0:
            mm_idxs = np.random.choice(len(dataset), mm_num_samples, replace=False)
            mm_idxs = np.sort(mm_idxs)

        all_caption = []
        all_m_lens = []
        all_data = []
        with torch.no_grad():
            for i, data in tqdm(enumerate(dataloader)):
                word_emb, pos_ohot, caption, cap_lens, motions, m_lens, tokens = data
                all_data.append(data)
                tokens = tokens[0].split("_")
                mm_num_now = len(mm_generated_motions)
                is_mm = (
                    True
                    if ((mm_num_now < mm_num_samples) and (i == mm_idxs[mm_num_now]))
                    else False
                )
                repeat_times = mm_num_repeats if is_mm else 1
                m_lens = max(
                    torch.div(m_lens, opt.unit_length, rounding_mode="trunc")
                    * opt.unit_length,
                    min_mov_length * opt.unit_length,
                )
                m_lens = min(m_lens, opt.max_motion_length)
                if isinstance(m_lens, int):
                    m_lens = torch.LongTensor([m_lens]).to(opt.device)
                else:
                    m_lens = m_lens.to(opt.device)
                for t in range(repeat_times):
                    all_m_lens.append(m_lens)
                    all_caption.extend(caption)
                if is_mm:
                    mm_generated_motions.append(0)
        all_m_lens = torch.stack(all_m_lens)

        # Generate all sequences
        with torch.no_grad():
            all_pred_motions, t_eval = pipeline.generate(all_caption, all_m_lens)
        self.eval_generate_time = t_eval

        cur_idx = 0
        mm_generated_motions = []
        with torch.no_grad():
            for i, data_dummy in tqdm(enumerate(dataloader)):
                data = all_data[i]
                word_emb, pos_ohot, caption, cap_lens, motions, m_lens, tokens = data
                tokens = tokens[0].split("_")
                mm_num_now = len(mm_generated_motions)
                is_mm = (
                    True
                    if ((mm_num_now < mm_num_samples) and (i == mm_idxs[mm_num_now]))
                    else False
                )
                repeat_times = mm_num_repeats if is_mm else 1
                mm_motions = []
                for t in range(repeat_times):
                    pred_motions = all_pred_motions[cur_idx]
                    cur_idx += 1
                    if t == 0:
                        sub_dict = {
                            "motion": pred_motions.cpu().numpy(),
                            "length": pred_motions.shape[0],  # m_lens[0].item(), #
                            "caption": caption[0],
                            "cap_len": cap_lens[0].item(),
                            "tokens": tokens,
                        }
                        generated_motion.append(sub_dict)

                    if is_mm:
                        mm_motions.append(
                            {
                                "motion": pred_motions.cpu().numpy(),
                                "length": pred_motions.shape[
                                    0
                                ],  # m_lens[0].item(), #m_lens[0].item()
                            }
                        )
                if is_mm:
                    mm_generated_motions.append(
                        {
                            "caption": caption[0],
                            "tokens": tokens,
                            "cap_len": cap_lens[0].item(),
                            "mm_motions": mm_motions,
                        }
                    )
        self.generated_motion = generated_motion
        self.mm_generated_motion = mm_generated_motions
        self.opt = opt
        self.w_vectorizer = w_vectorizer

    def __len__(self):
        return len(self.generated_motion)

    def __getitem__(self, item):
        data = self.generated_motion[item]
        motion, m_length, caption, tokens = (
            data["motion"],
            data["length"],
            data["caption"],
            data["tokens"],
        )
        sent_len = data["cap_len"]

        # This step is needed because T2M evaluators expect their norm convention
        normed_motion = motion
        denormed_motion = self.dataset.inv_transform(normed_motion)
        renormed_motion = (
            denormed_motion - self.dataset.mean_for_eval
        ) / self.dataset.std_for_eval  # according to T2M norms
        motion = renormed_motion

        pos_one_hots = []
        word_embeddings = []
        for token in tokens:
            word_emb, pos_oh = self.w_vectorizer[token]
            pos_one_hots.append(pos_oh[None, :])
            word_embeddings.append(word_emb[None, :])
        pos_one_hots = np.concatenate(pos_one_hots, axis=0)
        word_embeddings = np.concatenate(word_embeddings, axis=0)
        length = len(motion)
        if length < self.opt.max_motion_length:
            motion = np.concatenate(
                [
                    motion,
                    np.zeros((self.opt.max_motion_length - length, motion.shape[1])),
                ],
                axis=0,
            )
        return (
            word_embeddings,
            pos_one_hots,
            caption,
            sent_len,
            motion,
            m_length,
            "_".join(tokens),
        )


def collate_fn(batch):
    batch.sort(key=lambda x: x[3], reverse=True)
    return default_collate(batch)


class MMGeneratedDataset(Dataset):
    def __init__(self, opt, motion_dataset, w_vectorizer):
        self.opt = opt
        self.dataset = motion_dataset.mm_generated_motion
        self.w_vectorizer = w_vectorizer

    def __len__(self):
        return len(self.dataset)

    def __getitem__(self, item):
        data = self.dataset[item]
        mm_motions = data["mm_motions"]
        m_lens = []
        motions = []
        for mm_motion in mm_motions:
            m_lens.append(mm_motion["length"])
            motion = mm_motion["motion"]
            if len(motion) < self.opt.max_motion_length:
                motion = np.concatenate(
                    [
                        motion,
                        np.zeros(
                            (self.opt.max_motion_length - len(motion), motion.shape[1])
                        ),
                    ],
                    axis=0,
                )
            motion = motion[None, :]
            motions.append(motion)
        m_lens = np.array(m_lens, dtype=np.int32)
        motions = np.concatenate(motions, axis=0)
        sort_indx = np.argsort(m_lens)[::-1].copy()

        m_lens = m_lens[sort_indx]
        motions = motions[sort_indx]
        return motions, m_lens


def get_motion_loader(
    opt, batch_size, pipeline, ground_truth_dataset, mm_num_samples, mm_num_repeats
):

    # Currently the configurations of two datasets are almost the same
    if opt.dataset_name == "t2m" or opt.dataset_name == "kit":
        w_vectorizer = WordVectorizer(opt.glove_dir, "our_vab")
    else:
        raise KeyError("Dataset not recognized!!")

    dataset = GeneratedDataset(
        opt,
        pipeline,
        ground_truth_dataset,
        w_vectorizer,
        mm_num_samples,
        mm_num_repeats,
    )
    mm_dataset = MMGeneratedDataset(opt, dataset, w_vectorizer)

    motion_loader = DataLoader(
        dataset,
        batch_size=batch_size,
        collate_fn=collate_fn,
        drop_last=True,
        num_workers=4,
    )
    mm_motion_loader = DataLoader(mm_dataset, batch_size=1, num_workers=1)

    return motion_loader, mm_motion_loader, dataset.eval_generate_time