Spaces:
Build error
Build error
import gradio as gr | |
import requests | |
import os | |
##Bloom Inference API | |
API_URL = "https://api-inference.huggingface.co/models/bigscience/bloom" | |
HF_TOKEN = os.environ["HF_TOKEN"] | |
headers = {"Authorization": f"Bearer {HF_TOKEN}"} | |
def text_generate(prompt, generated_txt): | |
#Prints to debug the code | |
print(f"*****Inside text_generate - Prompt is :{prompt}") | |
json_ = {"inputs": prompt, | |
"parameters": | |
{ | |
"top_p": 0.9, | |
"temperature": 1.1, | |
#"max_new_tokens": 64, | |
"return_full_text": True, | |
"do_sample":True, | |
}, | |
"options": | |
{"use_cache": True, | |
"wait_for_model": True, | |
},} | |
response = requests.post(API_URL, headers=headers, json=json_) | |
print(f"Response is : {response}") | |
output = response.json() | |
print(f"output is : {output}") | |
output_tmp = output[0]['generated_text'] | |
print(f"output_tmp is: {output_tmp}") | |
solution = output_tmp.split("\nQ:")[0] | |
print(f"Final response after splits is: {solution}") | |
if '\nOutput:' in solution: | |
final_solution = solution.split("\nOutput:")[0] | |
print(f"Response after removing output is: {final_solution}") | |
elif '\n\n' in solution: | |
final_solution = solution.split("\n\n")[0] | |
print(f"Response after removing new line entries is: {final_solution}") | |
else: | |
final_solution = solution | |
if len(generated_txt) == 0 : | |
display_output = final_solution | |
else: | |
display_output = generated_txt[:-len(prompt)] + final_solution | |
new_prompt = final_solution[len(prompt):] | |
print(f"new prompt for next cycle is : {new_prompt}") | |
print(f"display_output for printing on screen is : {display_output}") | |
if len(new_prompt) == 0: | |
temp_text = display_output[::-1] | |
print(f"What is the last character of sentence? : {temp_text[0]}") | |
if temp_text[1] == '.': | |
first_period_loc = temp_text[2:].find('.') + 1 | |
print(f"Location of last Period is: {first_period_loc}") | |
new_prompt = display_output[-first_period_loc:-1] | |
print(f"Not sending blank as prompt so new prompt for next cycle is : {new_prompt}") | |
else: | |
print("HERE") | |
first_period_loc = temp_text.find('.') | |
print(f"Location of last Period is : {first_period_loc}") | |
new_prompt = display_output[-first_period_loc:-1] | |
print(f"Not sending blank as prompt so new prompt for next cycle is : {new_prompt}") | |
display_output = display_output[:-1] | |
return display_output, new_prompt | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown("<h1><center>Write Stories Using Bloom</center></h1>") | |
gr.Markdown( | |
"""Bloom is a model by [HuggingFace](https://huggingface.co/bigscience/bloom) and a team of more than 1000 researchers coming together as [BigScienceW Bloom](https://twitter.com/BigscienceW).\n\nLarge language models have demonstrated a capability of producing coherent sentences and given a context we can pretty much decide the *theme* of generated text.\n\nHow to Use this App: Use the sample text given as prompt or type in a new prompt as a starting point of your awesome story! Just keep pressing the 'Generate Text' Button and go crazy!\n\nHow this App works: This app operates by feeding back the text generated by Bloom to itself as a Prompt for next generation round and so on. Currently, due to size-limits on Prompt and Token generation, we are only able to feed very limited-length text as Prompt and are getting very few tokens generated in-turn. This makes it difficult to keep a tab on theme of text generation, so please bear with that. In summary, I believe it is a nice little fun App which you can play with for a while.\n\nThis Space is created by [Yuvraj Sharma](https://twitter.com/yvrjsharma) for EuroPython 2022 Demo.""" | |
) | |
with gr.Row(): | |
input_prompt = gr.Textbox(label="Write some text to get started...", lines=3, value="Dear human philosophers, I read your comments on my abilities and limitations with great interest.") | |
with gr.Row(): | |
generated_txt = gr.Textbox(lines=7, visible = True) | |
b1 = gr.Button("Generate Your Story") | |
b1.click(text_generate, inputs=[input_prompt, generated_txt], outputs=[generated_txt, input_prompt]) | |
demo.launch(enable_queue=True, debug=True) |