Spaces:
Sleeping
Sleeping
Add application files
Browse files- app.py +38 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy
|
3 |
+
from scipy.special import softmax
|
4 |
+
|
5 |
+
from transformers import (
|
6 |
+
AutoTokenizer,
|
7 |
+
AutoConfig,
|
8 |
+
AutoModelForSequenceClassification
|
9 |
+
)
|
10 |
+
|
11 |
+
model_path = "EmotiScan/amazon-comments-bert"
|
12 |
+
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
14 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
15 |
+
|
16 |
+
def get_sentiments(text):
|
17 |
+
|
18 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
19 |
+
output = model(**encoded_input)
|
20 |
+
|
21 |
+
scores = output[0][0].detach().numpy()
|
22 |
+
scores = softmax(scores)
|
23 |
+
|
24 |
+
labels = ['Terrible', 'Bad', 'Good', 'Very Good', 'Excellent']
|
25 |
+
scores = {l:float(s) for (l,s) in zip(labels, scores) }
|
26 |
+
|
27 |
+
return scores
|
28 |
+
|
29 |
+
try_out = gr.Interface(
|
30 |
+
fn=get_sentiments,
|
31 |
+
inputs=gr.Textbox(placeholder="Input the product review"),
|
32 |
+
outputs=gr.Textbox(),
|
33 |
+
# interpretation="default",
|
34 |
+
css= "body {background-color: black}"
|
35 |
+
)
|
36 |
+
|
37 |
+
try_out.launch()
|
38 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
3 |
+
scipy
|
4 |
+
gradio
|