Dylan Ebert
commited on
Commit
•
92f2e1f
1
Parent(s):
dec9ec5
update gradio version
Browse files.
.
.
debug
Update app.py
validate exists
.
.
.
.
.
match requirements
add xformers
flip output
rotate output
rot mat fix
.
.
- README.md +2 -2
- app.py +44 -126
- core/gs.py +3 -0
- core/models.py +11 -0
- requirements.txt +5 -5
README.md
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
---
|
2 |
-
title: LGM
|
3 |
emoji: 🦀
|
4 |
colorFrom: red
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
|
|
1 |
---
|
2 |
+
title: LGM-Mini
|
3 |
emoji: 🦀
|
4 |
colorFrom: red
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.19.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
app.py
CHANGED
@@ -1,10 +1,6 @@
|
|
1 |
import os
|
2 |
-
import tyro
|
3 |
-
import imageio
|
4 |
import numpy as np
|
5 |
-
import tqdm
|
6 |
import torch
|
7 |
-
import torch.nn as nn
|
8 |
import torch.nn.functional as F
|
9 |
import torchvision.transforms.functional as TF
|
10 |
from safetensors.torch import load_file
|
@@ -15,23 +11,23 @@ import gradio as gr
|
|
15 |
from huggingface_hub import hf_hub_download
|
16 |
ckpt_path = hf_hub_download(repo_id="ashawkey/LGM", filename="model_fp16.safetensors")
|
17 |
|
18 |
-
|
19 |
-
|
|
|
|
|
20 |
|
21 |
import kiui
|
22 |
from kiui.op import recenter
|
23 |
-
from kiui.cam import orbit_camera
|
24 |
|
25 |
-
from core.options import
|
26 |
from core.models import LGM
|
27 |
from mvdream.pipeline_mvdream import MVDreamPipeline
|
28 |
|
29 |
-
import spaces
|
30 |
-
|
31 |
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
|
32 |
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
|
33 |
-
|
34 |
-
|
|
|
35 |
|
36 |
# opt = tyro.cli(AllConfigs)
|
37 |
opt = Options(
|
@@ -67,9 +63,9 @@ model.eval()
|
|
67 |
|
68 |
tan_half_fov = np.tan(0.5 * np.deg2rad(opt.fovy))
|
69 |
proj_matrix = torch.zeros(4, 4, dtype=torch.float32, device=device)
|
70 |
-
proj_matrix[0, 0] = 1 / tan_half_fov
|
71 |
-
proj_matrix[1, 1] = 1 / tan_half_fov
|
72 |
-
proj_matrix[2, 2] = (opt.zfar + opt.znear) / (opt.zfar - opt.znear)
|
73 |
proj_matrix[3, 2] = - (opt.zfar * opt.znear) / (opt.zfar - opt.znear)
|
74 |
proj_matrix[2, 3] = 1
|
75 |
|
@@ -94,44 +90,22 @@ pipe_image = pipe_image.to(device)
|
|
94 |
bg_remover = rembg.new_session()
|
95 |
|
96 |
# process function
|
97 |
-
|
98 |
-
|
99 |
|
100 |
# seed
|
101 |
-
kiui.seed_everything(
|
102 |
|
103 |
-
os.
|
104 |
-
output_video_path = os.path.join(opt.workspace, GRADIO_VIDEO_PATH)
|
105 |
-
output_ply_path = os.path.join(opt.workspace, GRADIO_PLY_PATH)
|
106 |
|
107 |
-
#
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
# to white bg
|
116 |
-
image = image.astype(np.float32) / 255
|
117 |
-
image = recenter(image, image[..., 0] > 0, border_ratio=0.2)
|
118 |
-
image = image[..., :3] * image[..., -1:] + (1 - image[..., -1:])
|
119 |
-
mv_image.append(image)
|
120 |
-
# image-conditioned (may also input text, but no text usually works too)
|
121 |
-
else:
|
122 |
-
input_image = np.array(input_image) # uint8
|
123 |
-
# bg removal
|
124 |
-
carved_image = rembg.remove(input_image, session=bg_remover) # [H, W, 4]
|
125 |
-
mask = carved_image[..., -1] > 0
|
126 |
-
image = recenter(carved_image, mask, border_ratio=0.2)
|
127 |
-
image = image.astype(np.float32) / 255.0
|
128 |
-
image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4])
|
129 |
-
mv_image = pipe_image(prompt, image, negative_prompt=prompt_neg, num_inference_steps=input_num_steps, guidance_scale=5.0, elevation=input_elevation)
|
130 |
-
|
131 |
-
mv_image_grid = np.concatenate([
|
132 |
-
np.concatenate([mv_image[1], mv_image[2]], axis=1),
|
133 |
-
np.concatenate([mv_image[3], mv_image[0]], axis=1),
|
134 |
-
], axis=0)
|
135 |
|
136 |
# generate gaussians
|
137 |
input_image = np.stack([mv_image[1], mv_image[2], mv_image[3], mv_image[0]], axis=0) # [4, 256, 256, 3], float32
|
@@ -139,7 +113,7 @@ def process(input_image, prompt, prompt_neg='', input_elevation=0, input_num_ste
|
|
139 |
input_image = F.interpolate(input_image, size=(opt.input_size, opt.input_size), mode='bilinear', align_corners=False)
|
140 |
input_image = TF.normalize(input_image, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
|
141 |
|
142 |
-
rays_embeddings = model.prepare_default_rays(device, elevation=
|
143 |
input_image = torch.cat([input_image, rays_embeddings], dim=1).unsqueeze(0) # [1, 4, 9, H, W]
|
144 |
|
145 |
with torch.no_grad():
|
@@ -149,47 +123,8 @@ def process(input_image, prompt, prompt_neg='', input_elevation=0, input_num_ste
|
|
149 |
|
150 |
# save gaussians
|
151 |
model.gs.save_ply(gaussians, output_ply_path)
|
152 |
-
|
153 |
-
|
154 |
-
images = []
|
155 |
-
elevation = 0
|
156 |
-
if opt.fancy_video:
|
157 |
-
azimuth = np.arange(0, 720, 4, dtype=np.int32)
|
158 |
-
for azi in tqdm.tqdm(azimuth):
|
159 |
-
|
160 |
-
cam_poses = torch.from_numpy(orbit_camera(elevation, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
|
161 |
-
|
162 |
-
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
|
163 |
-
|
164 |
-
# cameras needed by gaussian rasterizer
|
165 |
-
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
|
166 |
-
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
|
167 |
-
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
|
168 |
-
|
169 |
-
scale = min(azi / 360, 1)
|
170 |
-
|
171 |
-
image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), scale_modifier=scale)['image']
|
172 |
-
images.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8))
|
173 |
-
else:
|
174 |
-
azimuth = np.arange(0, 360, 2, dtype=np.int32)
|
175 |
-
for azi in tqdm.tqdm(azimuth):
|
176 |
-
|
177 |
-
cam_poses = torch.from_numpy(orbit_camera(elevation, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
|
178 |
-
|
179 |
-
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
|
180 |
-
|
181 |
-
# cameras needed by gaussian rasterizer
|
182 |
-
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
|
183 |
-
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
|
184 |
-
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
|
185 |
-
|
186 |
-
image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), scale_modifier=1)['image']
|
187 |
-
images.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8))
|
188 |
-
|
189 |
-
images = np.concatenate(images, axis=0)
|
190 |
-
imageio.mimwrite(output_video_path, images, fps=30)
|
191 |
-
|
192 |
-
return output_ply_path, output_ply_path
|
193 |
|
194 |
# gradio UI
|
195 |
|
@@ -197,12 +132,23 @@ _TITLE = '''LGM Mini'''
|
|
197 |
|
198 |
_DESCRIPTION = '''
|
199 |
<div>
|
200 |
-
A lightweight version of <a href="https://huggingface.co/spaces/ashawkey/LGM">LGM: Large Multi-View Gaussian Model for High-Resolution 3D Content Creation</a
|
201 |
</div>
|
202 |
'''
|
203 |
|
204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
with block:
|
|
|
|
|
206 |
with gr.Row():
|
207 |
with gr.Column(scale=1):
|
208 |
gr.Markdown('# ' + _TITLE)
|
@@ -211,26 +157,15 @@ with block:
|
|
211 |
with gr.Row(variant='panel'):
|
212 |
with gr.Column(scale=1):
|
213 |
# input image
|
214 |
-
input_image = gr.Image(label="image", type='pil')
|
215 |
-
# input prompt
|
216 |
-
input_text = gr.Textbox(label="prompt")
|
217 |
-
# negative prompt
|
218 |
-
input_neg_text = gr.Textbox(label="negative prompt", value='ugly, blurry, pixelated obscure, unnatural colors, poor lighting, dull, unclear, cropped, lowres, low quality, artifacts, duplicate')
|
219 |
-
# elevation
|
220 |
-
input_elevation = gr.Slider(label="elevation", minimum=-90, maximum=90, step=1, value=0)
|
221 |
-
# inference steps
|
222 |
-
input_num_steps = gr.Slider(label="inference steps", minimum=1, maximum=100, step=1, value=30)
|
223 |
-
# random seed
|
224 |
-
input_seed = gr.Slider(label="random seed", minimum=0, maximum=100000, step=1, value=0)
|
225 |
# gen button
|
226 |
button_gen = gr.Button("Generate")
|
227 |
|
228 |
|
229 |
with gr.Column(scale=1):
|
230 |
output_splat = gr.Model3D(label="3D Gaussians")
|
231 |
-
output_file = gr.File(label="3D Gaussians (ply format)")
|
232 |
|
233 |
-
button_gen.click(
|
234 |
|
235 |
gr.Examples(
|
236 |
examples=[
|
@@ -242,27 +177,10 @@ with block:
|
|
242 |
"data_test/gso_rabbit.jpg",
|
243 |
],
|
244 |
inputs=[input_image],
|
245 |
-
outputs=[output_splat
|
246 |
-
fn=lambda x:
|
247 |
cache_examples=True,
|
248 |
label='Image-to-3D Examples'
|
249 |
)
|
250 |
-
|
251 |
-
gr.Examples(
|
252 |
-
examples=[
|
253 |
-
"teddy bear",
|
254 |
-
"hamburger",
|
255 |
-
"oldman's head sculpture",
|
256 |
-
"headphone",
|
257 |
-
"motorbike",
|
258 |
-
"mech suit"
|
259 |
-
|
260 |
-
],
|
261 |
-
inputs=[input_text],
|
262 |
-
outputs=[output_splat, output_file],
|
263 |
-
fn=lambda x: process(input_image=None, prompt=x),
|
264 |
-
cache_examples=True,
|
265 |
-
label='Text-to-3D Examples'
|
266 |
-
)
|
267 |
|
268 |
-
block.launch()
|
|
|
1 |
import os
|
|
|
|
|
2 |
import numpy as np
|
|
|
3 |
import torch
|
|
|
4 |
import torch.nn.functional as F
|
5 |
import torchvision.transforms.functional as TF
|
6 |
from safetensors.torch import load_file
|
|
|
11 |
from huggingface_hub import hf_hub_download
|
12 |
ckpt_path = hf_hub_download(repo_id="ashawkey/LGM", filename="model_fp16.safetensors")
|
13 |
|
14 |
+
try:
|
15 |
+
import diff_gaussian_rasterization
|
16 |
+
except ImportError:
|
17 |
+
os.system("pip install ./diff-gaussian-rasterization")
|
18 |
|
19 |
import kiui
|
20 |
from kiui.op import recenter
|
|
|
21 |
|
22 |
+
from core.options import Options
|
23 |
from core.models import LGM
|
24 |
from mvdream.pipeline_mvdream import MVDreamPipeline
|
25 |
|
|
|
|
|
26 |
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
|
27 |
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
|
28 |
+
|
29 |
+
TMP_DIR = '/tmp'
|
30 |
+
os.makedirs(TMP_DIR, exist_ok=True)
|
31 |
|
32 |
# opt = tyro.cli(AllConfigs)
|
33 |
opt = Options(
|
|
|
63 |
|
64 |
tan_half_fov = np.tan(0.5 * np.deg2rad(opt.fovy))
|
65 |
proj_matrix = torch.zeros(4, 4, dtype=torch.float32, device=device)
|
66 |
+
proj_matrix[0, 0] = -1 / tan_half_fov
|
67 |
+
proj_matrix[1, 1] = -1 / tan_half_fov
|
68 |
+
proj_matrix[2, 2] = - (opt.zfar + opt.znear) / (opt.zfar - opt.znear)
|
69 |
proj_matrix[3, 2] = - (opt.zfar * opt.znear) / (opt.zfar - opt.znear)
|
70 |
proj_matrix[2, 3] = 1
|
71 |
|
|
|
90 |
bg_remover = rembg.new_session()
|
91 |
|
92 |
# process function
|
93 |
+
def run(input_image):
|
94 |
+
prompt_neg = "ugly, blurry, pixelated obscure, unnatural colors, poor lighting, dull, unclear, cropped, lowres, low quality, artifacts, duplicate"
|
95 |
|
96 |
# seed
|
97 |
+
kiui.seed_everything(42)
|
98 |
|
99 |
+
output_ply_path = os.path.join(TMP_DIR, 'output.ply')
|
|
|
|
|
100 |
|
101 |
+
input_image = np.array(input_image) # uint8
|
102 |
+
# bg removal
|
103 |
+
carved_image = rembg.remove(input_image, session=bg_remover) # [H, W, 4]
|
104 |
+
mask = carved_image[..., -1] > 0
|
105 |
+
image = recenter(carved_image, mask, border_ratio=0.2)
|
106 |
+
image = image.astype(np.float32) / 255.0
|
107 |
+
image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4])
|
108 |
+
mv_image = pipe_image("", image, negative_prompt=prompt_neg, num_inference_steps=30, guidance_scale=5.0, elevation=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
# generate gaussians
|
111 |
input_image = np.stack([mv_image[1], mv_image[2], mv_image[3], mv_image[0]], axis=0) # [4, 256, 256, 3], float32
|
|
|
113 |
input_image = F.interpolate(input_image, size=(opt.input_size, opt.input_size), mode='bilinear', align_corners=False)
|
114 |
input_image = TF.normalize(input_image, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
|
115 |
|
116 |
+
rays_embeddings = model.prepare_default_rays(device, elevation=0)
|
117 |
input_image = torch.cat([input_image, rays_embeddings], dim=1).unsqueeze(0) # [1, 4, 9, H, W]
|
118 |
|
119 |
with torch.no_grad():
|
|
|
123 |
|
124 |
# save gaussians
|
125 |
model.gs.save_ply(gaussians, output_ply_path)
|
126 |
+
|
127 |
+
return output_ply_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
# gradio UI
|
130 |
|
|
|
132 |
|
133 |
_DESCRIPTION = '''
|
134 |
<div>
|
135 |
+
A lightweight version of <a href="https://huggingface.co/spaces/ashawkey/LGM">LGM: Large Multi-View Gaussian Model for High-Resolution 3D Content Creation</a>.
|
136 |
</div>
|
137 |
'''
|
138 |
|
139 |
+
css = '''
|
140 |
+
#duplicate-button {
|
141 |
+
margin: auto;
|
142 |
+
color: white;
|
143 |
+
background: #1565c0;
|
144 |
+
border-radius: 100vh;
|
145 |
+
}
|
146 |
+
'''
|
147 |
+
|
148 |
+
block = gr.Blocks(title=_TITLE, css=css)
|
149 |
with block:
|
150 |
+
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
|
151 |
+
|
152 |
with gr.Row():
|
153 |
with gr.Column(scale=1):
|
154 |
gr.Markdown('# ' + _TITLE)
|
|
|
157 |
with gr.Row(variant='panel'):
|
158 |
with gr.Column(scale=1):
|
159 |
# input image
|
160 |
+
input_image = gr.Image(label="image", type='pil', height=300)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
# gen button
|
162 |
button_gen = gr.Button("Generate")
|
163 |
|
164 |
|
165 |
with gr.Column(scale=1):
|
166 |
output_splat = gr.Model3D(label="3D Gaussians")
|
|
|
167 |
|
168 |
+
button_gen.click(fn=run, inputs=[input_image], outputs=[output_splat])
|
169 |
|
170 |
gr.Examples(
|
171 |
examples=[
|
|
|
177 |
"data_test/gso_rabbit.jpg",
|
178 |
],
|
179 |
inputs=[input_image],
|
180 |
+
outputs=[output_splat],
|
181 |
+
fn=lambda x: run(input_image=x),
|
182 |
cache_examples=True,
|
183 |
label='Image-to-3D Examples'
|
184 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
|
186 |
+
block.queue().launch(debug=True, share=True)
|
core/gs.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import numpy as np
|
2 |
|
3 |
import torch
|
@@ -105,6 +106,8 @@ class GaussianRenderer:
|
|
105 |
assert gaussians.shape[0] == 1, 'only support batch size 1'
|
106 |
|
107 |
from plyfile import PlyData, PlyElement
|
|
|
|
|
108 |
|
109 |
means3D = gaussians[0, :, 0:3].contiguous().float()
|
110 |
opacity = gaussians[0, :, 3:4].contiguous().float()
|
|
|
1 |
+
import os
|
2 |
import numpy as np
|
3 |
|
4 |
import torch
|
|
|
106 |
assert gaussians.shape[0] == 1, 'only support batch size 1'
|
107 |
|
108 |
from plyfile import PlyData, PlyElement
|
109 |
+
|
110 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
111 |
|
112 |
means3D = gaussians[0, :, 0:3].contiguous().float()
|
113 |
opacity = gaussians[0, :, 3:4].contiguous().float()
|
core/models.py
CHANGED
@@ -112,6 +112,17 @@ class LGM(nn.Module):
|
|
112 |
rotation = self.rot_act(x[..., 7:11])
|
113 |
rgbs = self.rgb_act(x[..., 11:])
|
114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
gaussians = torch.cat([pos, opacity, scale, rotation, rgbs], dim=-1) # [B, N, 14]
|
116 |
|
117 |
return gaussians
|
|
|
112 |
rotation = self.rot_act(x[..., 7:11])
|
113 |
rgbs = self.rgb_act(x[..., 11:])
|
114 |
|
115 |
+
rot_matrix = torch.tensor([[1.0, 0.0, 0.0, 0.0],
|
116 |
+
[0.0, -1.0, 0.0, 0.0],
|
117 |
+
[0.0, 0.0, -1.0, 0.0],
|
118 |
+
[0.0, 0.0, 0.0, 1.0]], dtype=torch.float32, device=images.device)
|
119 |
+
|
120 |
+
pos_4d = torch.cat([pos, torch.ones_like(pos[..., :1])], dim=-1)
|
121 |
+
pos = torch.matmul(pos_4d, rot_matrix) # [B, N, 4]
|
122 |
+
pos = pos[..., :3]
|
123 |
+
|
124 |
+
rotation = torch.matmul(rotation, rot_matrix)
|
125 |
+
|
126 |
gaussians = torch.cat([pos, opacity, scale, rotation, rgbs], dim=-1) # [B, N, 14]
|
127 |
|
128 |
return gaussians
|
requirements.txt
CHANGED
@@ -1,7 +1,3 @@
|
|
1 |
-
--extra-index-url https://download.pytorch.org/whl/cu118
|
2 |
-
torch==2.0.0
|
3 |
-
xformers
|
4 |
-
|
5 |
numpy
|
6 |
tyro
|
7 |
diffusers
|
@@ -28,4 +24,8 @@ trimesh
|
|
28 |
kiui >= 0.2.3
|
29 |
xatlas
|
30 |
roma
|
31 |
-
plyfile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
numpy
|
2 |
tyro
|
3 |
diffusers
|
|
|
24 |
kiui >= 0.2.3
|
25 |
xatlas
|
26 |
roma
|
27 |
+
plyfile
|
28 |
+
torch==2.0.0 --index-url https://download.pytorch.org/whl/cu118
|
29 |
+
torchvision==0.15.1 --index-url https://download.pytorch.org/whl/cu118
|
30 |
+
torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu118
|
31 |
+
xformers
|