Biomap / biomap /data.py
jeremyLE-Ekimetrics's picture
first commit
5c718d1
raw
history blame
22.7 kB
import os
import random
from os.path import join
import numpy as np
import torch.multiprocessing
from PIL import Image
from scipy.io import loadmat
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from torchvision.datasets.cityscapes import Cityscapes
from torchvision.transforms.functional import to_pil_image
from tqdm import tqdm
def bit_get(val, idx):
"""Gets the bit value.
Args:
val: Input value, int or numpy int array.
idx: Which bit of the input val.
Returns:
The "idx"-th bit of input val.
"""
return (val >> idx) & 1
def create_pascal_label_colormap():
"""Creates a label colormap used in PASCAL VOC segmentation benchmark.
Returns:
A colormap for visualizing segmentation results.
"""
colormap = np.zeros((512, 3), dtype=int)
ind = np.arange(512, dtype=int)
for shift in reversed(list(range(8))):
for channel in range(3):
colormap[:, channel] |= bit_get(ind, channel) << shift
ind >>= 3
return colormap
def create_cityscapes_colormap():
colors = [(128, 64, 128),
(244, 35, 232),
(250, 170, 160),
(230, 150, 140),
(70, 70, 70),
(102, 102, 156),
(190, 153, 153),
(180, 165, 180),
(150, 100, 100),
(150, 120, 90),
(153, 153, 153),
(153, 153, 153),
(250, 170, 30),
(220, 220, 0),
(107, 142, 35),
(152, 251, 152),
(70, 130, 180),
(220, 20, 60),
(255, 0, 0),
(0, 0, 142),
(0, 0, 70),
(0, 60, 100),
(0, 0, 90),
(0, 0, 110),
(0, 80, 100),
(0, 0, 230),
(119, 11, 32),
(0, 0, 0)]
return np.array(colors)
class DirectoryDataset(Dataset):
def __init__(self, root, path, image_set, transform, target_transform):
super(DirectoryDataset, self).__init__()
self.split = image_set
self.dir = join(root, path)
self.img_dir = join(self.dir, "imgs", self.split)
self.label_dir = join(self.dir, "labels", self.split)
self.transform = transform
self.target_transform = target_transform
self.img_files = np.array(sorted(os.listdir(self.img_dir)))
assert len(self.img_files) > 0
if os.path.exists(join(self.dir, "labels")):
self.label_files = np.array(sorted(os.listdir(self.label_dir)))
assert len(self.img_files) == len(self.label_files)
else:
self.label_files = None
self.fine_to_coarse = {0: 0,
1: 1,
2: 2,
3: 3,
4: 4,
5: 5,
6: 6,
7: -1,
}
def __getitem__(self, index):
image_fn = self.img_files[index]
img = Image.open(join(self.img_dir, image_fn))
if self.label_files is not None:
label_fn = self.label_files[index]
label = Image.open(join(self.label_dir, label_fn))
seed = np.random.randint(2147483647)
random.seed(seed)
torch.manual_seed(seed)
img = self.transform(img)
if self.label_files is not None:
random.seed(seed)
torch.manual_seed(seed)
label = self.target_transform(label)
new_label_map = torch.zeros_like(label)
for fine, coarse in self.fine_to_coarse.items():
new_label_map[label == fine] = coarse
label = new_label_map
else:
label = torch.zeros(img.shape[1], img.shape[2], dtype=torch.int64) - 1
mask = (label > 0).to(torch.float32)
return img, label, mask
def __len__(self):
return len(self.img_files)
class Potsdam(Dataset):
def __init__(self, root, image_set, transform, target_transform, coarse_labels):
super(Potsdam, self).__init__()
self.split = image_set
self.root = os.path.join(root, "potsdam")
self.transform = transform
self.target_transform = target_transform
split_files = {
"train": ["labelled_train.txt"],
"unlabelled_train": ["unlabelled_train.txt"],
# "train": ["unlabelled_train.txt"],
"val": ["labelled_test.txt"],
"train+val": ["labelled_train.txt", "labelled_test.txt"],
"all": ["all.txt"]
}
assert self.split in split_files.keys()
self.files = []
for split_file in split_files[self.split]:
with open(join(self.root, split_file), "r") as f:
self.files.extend(fn.rstrip() for fn in f.readlines())
self.coarse_labels = coarse_labels
self.fine_to_coarse = {0: 0, 4: 0, # roads and cars
1: 1, 5: 1, # buildings and clutter
2: 2, 3: 2, # vegetation and trees
255: -1
}
def __getitem__(self, index):
image_id = self.files[index]
img = loadmat(join(self.root, "imgs", image_id + ".mat"))["img"]
img = to_pil_image(torch.from_numpy(img).permute(2, 0, 1)[:3]) # TODO add ir channel back
try:
label = loadmat(join(self.root, "gt", image_id + ".mat"))["gt"]
label = to_pil_image(torch.from_numpy(label).unsqueeze(-1).permute(2, 0, 1))
except FileNotFoundError:
label = to_pil_image(torch.ones(1, img.height, img.width))
seed = np.random.randint(2147483647)
random.seed(seed)
torch.manual_seed(seed)
img = self.transform(img)
random.seed(seed)
torch.manual_seed(seed)
label = self.target_transform(label).squeeze(0)
if self.coarse_labels:
new_label_map = torch.zeros_like(label)
for fine, coarse in self.fine_to_coarse.items():
new_label_map[label == fine] = coarse
label = new_label_map
mask = (label > 0).to(torch.float32)
return img, label, mask
def __len__(self):
return len(self.files)
class PotsdamRaw(Dataset):
def __init__(self, root, image_set, transform, target_transform, coarse_labels):
super(PotsdamRaw, self).__init__()
self.split = image_set
self.root = os.path.join(root, "potsdamraw", "processed")
self.transform = transform
self.target_transform = target_transform
self.files = []
for im_num in range(38):
for i_h in range(15):
for i_w in range(15):
self.files.append("{}_{}_{}.mat".format(im_num, i_h, i_w))
self.coarse_labels = coarse_labels
self.fine_to_coarse = {0: 0, 4: 0, # roads and cars
1: 1, 5: 1, # buildings and clutter
2: 2, 3: 2, # vegetation and trees
255: -1
}
def __getitem__(self, index):
image_id = self.files[index]
img = loadmat(join(self.root, "imgs", image_id))["img"]
img = to_pil_image(torch.from_numpy(img).permute(2, 0, 1)[:3]) # TODO add ir channel back
try:
label = loadmat(join(self.root, "gt", image_id))["gt"]
label = to_pil_image(torch.from_numpy(label).unsqueeze(-1).permute(2, 0, 1))
except FileNotFoundError:
label = to_pil_image(torch.ones(1, img.height, img.width))
seed = np.random.randint(2147483647)
random.seed(seed)
torch.manual_seed(seed)
img = self.transform(img)
random.seed(seed)
torch.manual_seed(seed)
label = self.target_transform(label).squeeze(0)
if self.coarse_labels:
new_label_map = torch.zeros_like(label)
for fine, coarse in self.fine_to_coarse.items():
new_label_map[label == fine] = coarse
label = new_label_map
mask = (label > 0).to(torch.float32)
return img, label, mask
def __len__(self):
return len(self.files)
class Coco(Dataset):
def __init__(self, root, image_set, transform, target_transform,
coarse_labels, exclude_things, subset=None):
super(Coco, self).__init__()
self.split = image_set
self.root = join(root, "cocostuff")
self.coarse_labels = coarse_labels
self.transform = transform
self.label_transform = target_transform
self.subset = subset
self.exclude_things = exclude_things
if self.subset is None:
self.image_list = "Coco164kFull_Stuff_Coarse.txt"
elif self.subset == 6: # IIC Coarse
self.image_list = "Coco164kFew_Stuff_6.txt"
elif self.subset == 7: # IIC Fine
self.image_list = "Coco164kFull_Stuff_Coarse_7.txt"
assert self.split in ["train", "val", "train+val"]
split_dirs = {
"train": ["train2017"],
"val": ["val2017"],
"train+val": ["train2017", "val2017"]
}
self.image_files = []
self.label_files = []
for split_dir in split_dirs[self.split]:
with open(join(self.root, "curated", split_dir, self.image_list), "r") as f:
img_ids = [fn.rstrip() for fn in f.readlines()]
for img_id in img_ids:
self.image_files.append(join(self.root, "images", split_dir, img_id + ".jpg"))
self.label_files.append(join(self.root, "annotations", split_dir, img_id + ".png"))
self.fine_to_coarse = {0: 9, 1: 11, 2: 11, 3: 11, 4: 11, 5: 11, 6: 11, 7: 11, 8: 11, 9: 8, 10: 8, 11: 8, 12: 8,
13: 8, 14: 8, 15: 7, 16: 7, 17: 7, 18: 7, 19: 7, 20: 7, 21: 7, 22: 7, 23: 7, 24: 7,
25: 6, 26: 6, 27: 6, 28: 6, 29: 6, 30: 6, 31: 6, 32: 6, 33: 10, 34: 10, 35: 10, 36: 10,
37: 10, 38: 10, 39: 10, 40: 10, 41: 10, 42: 10, 43: 5, 44: 5, 45: 5, 46: 5, 47: 5, 48: 5,
49: 5, 50: 5, 51: 2, 52: 2, 53: 2, 54: 2, 55: 2, 56: 2, 57: 2, 58: 2, 59: 2, 60: 2,
61: 3, 62: 3, 63: 3, 64: 3, 65: 3, 66: 3, 67: 3, 68: 3, 69: 3, 70: 3, 71: 0, 72: 0,
73: 0, 74: 0, 75: 0, 76: 0, 77: 1, 78: 1, 79: 1, 80: 1, 81: 1, 82: 1, 83: 4, 84: 4,
85: 4, 86: 4, 87: 4, 88: 4, 89: 4, 90: 4, 91: 17, 92: 17, 93: 22, 94: 20, 95: 20, 96: 22,
97: 15, 98: 25, 99: 16, 100: 13, 101: 12, 102: 12, 103: 17, 104: 17, 105: 23, 106: 15,
107: 15, 108: 17, 109: 15, 110: 21, 111: 15, 112: 25, 113: 13, 114: 13, 115: 13, 116: 13,
117: 13, 118: 22, 119: 26, 120: 14, 121: 14, 122: 15, 123: 22, 124: 21, 125: 21, 126: 24,
127: 20, 128: 22, 129: 15, 130: 17, 131: 16, 132: 15, 133: 22, 134: 24, 135: 21, 136: 17,
137: 25, 138: 16, 139: 21, 140: 17, 141: 22, 142: 16, 143: 21, 144: 21, 145: 25, 146: 21,
147: 26, 148: 21, 149: 24, 150: 20, 151: 17, 152: 14, 153: 21, 154: 26, 155: 15, 156: 23,
157: 20, 158: 21, 159: 24, 160: 15, 161: 24, 162: 22, 163: 25, 164: 15, 165: 20, 166: 17,
167: 17, 168: 22, 169: 14, 170: 18, 171: 18, 172: 18, 173: 18, 174: 18, 175: 18, 176: 18,
177: 26, 178: 26, 179: 19, 180: 19, 181: 24}
self._label_names = [
"ground-stuff",
"plant-stuff",
"sky-stuff",
]
self.cocostuff3_coarse_classes = [23, 22, 21]
self.first_stuff_index = 12
def __getitem__(self, index):
image_path = self.image_files[index]
label_path = self.label_files[index]
seed = np.random.randint(2147483647)
random.seed(seed)
torch.manual_seed(seed)
img = self.transform(Image.open(image_path).convert("RGB"))
random.seed(seed)
torch.manual_seed(seed)
label = self.label_transform(Image.open(label_path)).squeeze(0)
label[label == 255] = -1 # to be consistent with 10k
coarse_label = torch.zeros_like(label)
for fine, coarse in self.fine_to_coarse.items():
coarse_label[label == fine] = coarse
coarse_label[label == -1] = -1
if self.coarse_labels:
coarser_labels = -torch.ones_like(label)
for i, c in enumerate(self.cocostuff3_coarse_classes):
coarser_labels[coarse_label == c] = i
return img, coarser_labels, coarser_labels >= 0
else:
if self.exclude_things:
return img, coarse_label - self.first_stuff_index, (coarse_label >= self.first_stuff_index)
else:
return img, coarse_label, coarse_label >= 0
def __len__(self):
return len(self.image_files)
class CityscapesSeg(Dataset):
def __init__(self, root, image_set, transform, target_transform):
super(CityscapesSeg, self).__init__()
self.split = image_set
self.root = join(root, "cityscapes")
if image_set == "train":
# our_image_set = "train_extra"
# mode = "coarse"
our_image_set = "train"
mode = "fine"
else:
our_image_set = image_set
mode = "fine"
self.inner_loader = Cityscapes(self.root, our_image_set,
mode=mode,
target_type="semantic",
transform=None,
target_transform=None)
self.transform = transform
self.target_transform = target_transform
self.first_nonvoid = 7
def __getitem__(self, index):
if self.transform is not None:
image, target = self.inner_loader[index]
seed = np.random.randint(2147483647)
random.seed(seed)
torch.manual_seed(seed)
image = self.transform(image)
random.seed(seed)
torch.manual_seed(seed)
target = self.target_transform(target)
target = target - self.first_nonvoid
target[target < 0] = -1
mask = target == -1
return image, target.squeeze(0), mask
else:
return self.inner_loader[index]
def __len__(self):
return len(self.inner_loader)
class CroppedDataset(Dataset):
def __init__(self, root, dataset_name, crop_type, crop_ratio, image_set, transform, target_transform):
super(CroppedDataset, self).__init__()
self.dataset_name = dataset_name
self.split = image_set
self.root = join(root, "cropped", "{}_{}_crop_{}".format(dataset_name, crop_type, crop_ratio))
self.transform = transform
self.target_transform = target_transform
self.img_dir = join(self.root, "img", self.split)
self.label_dir = join(self.root, "label", self.split)
self.num_images = len(os.listdir(self.img_dir))
assert self.num_images == len(os.listdir(self.label_dir))
def __getitem__(self, index):
image = Image.open(join(self.img_dir, "{}.jpg".format(index))).convert('RGB')
target = Image.open(join(self.label_dir, "{}.png".format(index)))
seed = np.random.randint(2147483647)
random.seed(seed)
torch.manual_seed(seed)
image = self.transform(image)
random.seed(seed)
torch.manual_seed(seed)
target = self.target_transform(target)
target = target - 1
mask = target == -1
return image, target.squeeze(0), mask
def __len__(self):
return self.num_images
class MaterializedDataset(Dataset):
def __init__(self, ds):
self.ds = ds
self.materialized = []
loader = DataLoader(ds, num_workers=12, collate_fn=lambda l: l[0])
for batch in tqdm(loader):
self.materialized.append(batch)
def __len__(self):
return len(self.ds)
def __getitem__(self, ind):
return self.materialized[ind]
class ContrastiveSegDataset(Dataset):
def __init__(self,
pytorch_data_dir,
dataset_name,
crop_type,
image_set,
transform,
target_transform,
cfg,
aug_geometric_transform=None,
aug_photometric_transform=None,
num_neighbors=5,
compute_knns=False,
mask=False,
pos_labels=False,
pos_images=False,
extra_transform=None,
model_type_override=None
):
super(ContrastiveSegDataset).__init__()
self.num_neighbors = num_neighbors
self.image_set = image_set
self.dataset_name = dataset_name
self.mask = mask
self.pos_labels = pos_labels
self.pos_images = pos_images
self.extra_transform = extra_transform
if dataset_name == "potsdam":
self.n_classes = 3
dataset_class = Potsdam
extra_args = dict(coarse_labels=True)
elif dataset_name == "potsdamraw":
self.n_classes = 3
dataset_class = PotsdamRaw
extra_args = dict(coarse_labels=True)
elif dataset_name == "directory":
self.n_classes = cfg.dir_dataset_n_classes
dataset_class = DirectoryDataset
extra_args = dict(path=cfg.dir_dataset_name)
elif dataset_name == "cityscapes" and crop_type is None:
self.n_classes = 27
dataset_class = CityscapesSeg
extra_args = dict()
elif dataset_name == "cityscapes" and crop_type is not None:
self.n_classes = 27
dataset_class = CroppedDataset
extra_args = dict(dataset_name="cityscapes", crop_type=crop_type, crop_ratio=cfg.crop_ratio)
elif dataset_name == "cocostuff3":
self.n_classes = 3
dataset_class = Coco
extra_args = dict(coarse_labels=True, subset=6, exclude_things=True)
elif dataset_name == "cocostuff15":
self.n_classes = 15
dataset_class = Coco
extra_args = dict(coarse_labels=False, subset=7, exclude_things=True)
elif dataset_name == "cocostuff27" and crop_type is not None:
self.n_classes = 27
dataset_class = CroppedDataset
extra_args = dict(dataset_name="cocostuff27", crop_type=cfg.crop_type, crop_ratio=cfg.crop_ratio)
elif dataset_name == "cocostuff27" and crop_type is None:
self.n_classes = 27
dataset_class = Coco
extra_args = dict(coarse_labels=False, subset=None, exclude_things=False)
if image_set == "val":
extra_args["subset"] = 7
else:
raise ValueError("Unknown dataset: {}".format(dataset_name))
self.aug_geometric_transform = aug_geometric_transform
self.aug_photometric_transform = aug_photometric_transform
self.dataset = dataset_class(
root=pytorch_data_dir,
image_set=self.image_set,
transform=transform,
target_transform=target_transform, **extra_args)
if model_type_override is not None:
model_type = model_type_override
else:
model_type = cfg.model_type
nice_dataset_name = cfg.dir_dataset_name if dataset_name == "directory" else dataset_name
feature_cache_file = join(pytorch_data_dir, "nns", "nns_{}_{}_{}_{}_{}.npz".format(
model_type, nice_dataset_name, image_set, crop_type, cfg.res))
if pos_labels or pos_images:
if not os.path.exists(feature_cache_file) or compute_knns:
raise ValueError("could not find nn file {} please run precompute_knns".format(feature_cache_file))
else:
loaded = np.load(feature_cache_file)
self.nns = loaded["nns"]
assert len(self.dataset) == self.nns.shape[0]
def __len__(self):
return len(self.dataset)
def _set_seed(self, seed):
random.seed(seed) # apply this seed to img tranfsorms
torch.manual_seed(seed) # needed for torchvision 0.7
def __getitem__(self, ind):
pack = self.dataset[ind]
if self.pos_images or self.pos_labels:
ind_pos = self.nns[ind][torch.randint(low=1, high=self.num_neighbors + 1, size=[]).item()]
pack_pos = self.dataset[ind_pos]
seed = np.random.randint(2147483647) # make a seed with numpy generator
self._set_seed(seed)
coord_entries = torch.meshgrid([torch.linspace(-1, 1, pack[0].shape[1]),
torch.linspace(-1, 1, pack[0].shape[2])])
coord = torch.cat([t.unsqueeze(0) for t in coord_entries], 0)
if self.extra_transform is not None:
extra_trans = self.extra_transform
else:
extra_trans = lambda i, x: x
def squeeze_tuple(label_raw):
if type(label_raw) == tuple:
return tuple(x.squeeze() for x in label_raw)
else:
return label_raw.squeeze()
ret = {
"ind": ind,
"img": extra_trans(ind, pack[0]),
"label": squeeze_tuple(extra_trans(ind, pack[1]))
}
if self.pos_images:
ret["img_pos"] = extra_trans(ind, pack_pos[0])
ret["ind_pos"] = ind_pos
if self.mask:
ret["mask"] = pack[2]
if self.pos_labels:
ret["label_pos"] = squeeze_tuple(extra_trans(ind, pack_pos[1]))
ret["mask_pos"] = pack_pos[2]
if self.aug_photometric_transform is not None:
img_aug = self.aug_photometric_transform(self.aug_geometric_transform(pack[0]))
self._set_seed(seed)
coord_aug = self.aug_geometric_transform(coord)
ret["img_aug"] = img_aug
ret["coord_aug"] = coord_aug.permute(1, 2, 0)
return ret