Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Optional, Tuple | |
import jax | |
import jax.numpy as jnp | |
from flax import linen as nn | |
from flax.core.frozen_dict import FrozenDict | |
from transformers import CLIPConfig, FlaxPreTrainedModel | |
from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule | |
def jax_cosine_distance(emb_1, emb_2, eps=1e-12): | |
norm_emb_1 = jnp.divide(emb_1.T, jnp.clip(jnp.linalg.norm(emb_1, axis=1), a_min=eps)).T | |
norm_emb_2 = jnp.divide(emb_2.T, jnp.clip(jnp.linalg.norm(emb_2, axis=1), a_min=eps)).T | |
return jnp.matmul(norm_emb_1, norm_emb_2.T) | |
class FlaxStableDiffusionSafetyCheckerModule(nn.Module): | |
config: CLIPConfig | |
dtype: jnp.dtype = jnp.float32 | |
def setup(self): | |
self.vision_model = FlaxCLIPVisionModule(self.config.vision_config) | |
self.visual_projection = nn.Dense(self.config.projection_dim, use_bias=False, dtype=self.dtype) | |
self.concept_embeds = self.param("concept_embeds", jax.nn.initializers.ones, (17, self.config.projection_dim)) | |
self.special_care_embeds = self.param( | |
"special_care_embeds", jax.nn.initializers.ones, (3, self.config.projection_dim) | |
) | |
self.concept_embeds_weights = self.param("concept_embeds_weights", jax.nn.initializers.ones, (17,)) | |
self.special_care_embeds_weights = self.param("special_care_embeds_weights", jax.nn.initializers.ones, (3,)) | |
def __call__(self, clip_input): | |
pooled_output = self.vision_model(clip_input)[1] | |
image_embeds = self.visual_projection(pooled_output) | |
special_cos_dist = jax_cosine_distance(image_embeds, self.special_care_embeds) | |
cos_dist = jax_cosine_distance(image_embeds, self.concept_embeds) | |
# increase this value to create a stronger `nfsw` filter | |
# at the cost of increasing the possibility of filtering benign image inputs | |
adjustment = 0.0 | |
special_scores = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment | |
special_scores = jnp.round(special_scores, 3) | |
is_special_care = jnp.any(special_scores > 0, axis=1, keepdims=True) | |
# Use a lower threshold if an image has any special care concept | |
special_adjustment = is_special_care * 0.01 | |
concept_scores = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment | |
concept_scores = jnp.round(concept_scores, 3) | |
has_nsfw_concepts = jnp.any(concept_scores > 0, axis=1) | |
return has_nsfw_concepts | |
class FlaxStableDiffusionSafetyChecker(FlaxPreTrainedModel): | |
config_class = CLIPConfig | |
main_input_name = "clip_input" | |
module_class = FlaxStableDiffusionSafetyCheckerModule | |
def __init__( | |
self, | |
config: CLIPConfig, | |
input_shape: Optional[Tuple] = None, | |
seed: int = 0, | |
dtype: jnp.dtype = jnp.float32, | |
_do_init: bool = True, | |
**kwargs, | |
): | |
if input_shape is None: | |
input_shape = (1, 224, 224, 3) | |
module = self.module_class(config=config, dtype=dtype, **kwargs) | |
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) | |
def init_weights(self, rng: jax.Array, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: | |
# init input tensor | |
clip_input = jax.random.normal(rng, input_shape) | |
params_rng, dropout_rng = jax.random.split(rng) | |
rngs = {"params": params_rng, "dropout": dropout_rng} | |
random_params = self.module.init(rngs, clip_input)["params"] | |
return random_params | |
def __call__( | |
self, | |
clip_input, | |
params: dict = None, | |
): | |
clip_input = jnp.transpose(clip_input, (0, 2, 3, 1)) | |
return self.module.apply( | |
{"params": params or self.params}, | |
jnp.array(clip_input, dtype=jnp.float32), | |
rngs={}, | |
) | |