Spaces:
Running
on
Zero
Running
on
Zero
import inspect | |
from typing import Callable, List, Optional, Union | |
import PIL.Image | |
import torch | |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModel | |
from ....models import AutoencoderKL, UNet2DConditionModel | |
from ....schedulers import KarrasDiffusionSchedulers | |
from ....utils import logging | |
from ...pipeline_utils import DiffusionPipeline | |
from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline | |
from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline | |
from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class VersatileDiffusionPipeline(DiffusionPipeline): | |
r""" | |
Pipeline for text-to-image generation using Stable Diffusion. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. | |
text_encoder ([`~transformers.CLIPTextModel`]): | |
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). | |
tokenizer ([`~transformers.CLIPTokenizer`]): | |
A `CLIPTokenizer` to tokenize text. | |
unet ([`UNet2DConditionModel`]): | |
A `UNet2DConditionModel` to denoise the encoded image latents. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
safety_checker ([`StableDiffusionSafetyChecker`]): | |
Classification module that estimates whether generated images could be considered offensive or harmful. | |
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details | |
about a model's potential harms. | |
feature_extractor ([`~transformers.CLIPImageProcessor`]): | |
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. | |
""" | |
tokenizer: CLIPTokenizer | |
image_feature_extractor: CLIPImageProcessor | |
text_encoder: CLIPTextModel | |
image_encoder: CLIPVisionModel | |
image_unet: UNet2DConditionModel | |
text_unet: UNet2DConditionModel | |
vae: AutoencoderKL | |
scheduler: KarrasDiffusionSchedulers | |
def __init__( | |
self, | |
tokenizer: CLIPTokenizer, | |
image_feature_extractor: CLIPImageProcessor, | |
text_encoder: CLIPTextModel, | |
image_encoder: CLIPVisionModel, | |
image_unet: UNet2DConditionModel, | |
text_unet: UNet2DConditionModel, | |
vae: AutoencoderKL, | |
scheduler: KarrasDiffusionSchedulers, | |
): | |
super().__init__() | |
self.register_modules( | |
tokenizer=tokenizer, | |
image_feature_extractor=image_feature_extractor, | |
text_encoder=text_encoder, | |
image_encoder=image_encoder, | |
image_unet=image_unet, | |
text_unet=text_unet, | |
vae=vae, | |
scheduler=scheduler, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
def image_variation( | |
self, | |
image: Union[torch.FloatTensor, PIL.Image.Image], | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
): | |
r""" | |
The call function to the pipeline for generation. | |
Args: | |
image (`PIL.Image.Image`, `List[PIL.Image.Image]` or `torch.Tensor`): | |
The image prompt or prompts to guide the image generation. | |
height (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
A higher guidance scale value encourages the model to generate images closely linked to the text | |
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
generator (`torch.Generator`, *optional*): | |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor is generated by sampling using the supplied random `generator`. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
callback (`Callable`, *optional*): | |
A function that calls every `callback_steps` steps during inference. The function is called with the | |
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function is called. If not specified, the callback is called at | |
every step. | |
Examples: | |
```py | |
>>> from diffusers import VersatileDiffusionPipeline | |
>>> import torch | |
>>> import requests | |
>>> from io import BytesIO | |
>>> from PIL import Image | |
>>> # let's download an initial image | |
>>> url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg" | |
>>> response = requests.get(url) | |
>>> image = Image.open(BytesIO(response.content)).convert("RGB") | |
>>> pipe = VersatileDiffusionPipeline.from_pretrained( | |
... "shi-labs/versatile-diffusion", torch_dtype=torch.float16 | |
... ) | |
>>> pipe = pipe.to("cuda") | |
>>> generator = torch.Generator(device="cuda").manual_seed(0) | |
>>> image = pipe.image_variation(image, generator=generator).images[0] | |
>>> image.save("./car_variation.png") | |
``` | |
Returns: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | |
otherwise a `tuple` is returned where the first element is a list with the generated images and the | |
second element is a list of `bool`s indicating whether the corresponding generated image contains | |
"not-safe-for-work" (nsfw) content. | |
""" | |
expected_components = inspect.signature(VersatileDiffusionImageVariationPipeline.__init__).parameters.keys() | |
components = {name: component for name, component in self.components.items() if name in expected_components} | |
return VersatileDiffusionImageVariationPipeline(**components)( | |
image=image, | |
height=height, | |
width=width, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
negative_prompt=negative_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
eta=eta, | |
generator=generator, | |
latents=latents, | |
output_type=output_type, | |
return_dict=return_dict, | |
callback=callback, | |
callback_steps=callback_steps, | |
) | |
def text_to_image( | |
self, | |
prompt: Union[str, List[str]], | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
): | |
r""" | |
The call function to the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`): | |
The prompt or prompts to guide image generation. | |
height (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
A higher guidance scale value encourages the model to generate images closely linked to the text | |
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
generator (`torch.Generator`, *optional*): | |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor is generated by sampling using the supplied random `generator`. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
callback (`Callable`, *optional*): | |
A function that calls every `callback_steps` steps during inference. The function is called with the | |
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function is called. If not specified, the callback is called at | |
every step. | |
Examples: | |
```py | |
>>> from diffusers import VersatileDiffusionPipeline | |
>>> import torch | |
>>> pipe = VersatileDiffusionPipeline.from_pretrained( | |
... "shi-labs/versatile-diffusion", torch_dtype=torch.float16 | |
... ) | |
>>> pipe = pipe.to("cuda") | |
>>> generator = torch.Generator(device="cuda").manual_seed(0) | |
>>> image = pipe.text_to_image("an astronaut riding on a horse on mars", generator=generator).images[0] | |
>>> image.save("./astronaut.png") | |
``` | |
Returns: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | |
otherwise a `tuple` is returned where the first element is a list with the generated images and the | |
second element is a list of `bool`s indicating whether the corresponding generated image contains | |
"not-safe-for-work" (nsfw) content. | |
""" | |
expected_components = inspect.signature(VersatileDiffusionTextToImagePipeline.__init__).parameters.keys() | |
components = {name: component for name, component in self.components.items() if name in expected_components} | |
temp_pipeline = VersatileDiffusionTextToImagePipeline(**components) | |
output = temp_pipeline( | |
prompt=prompt, | |
height=height, | |
width=width, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
negative_prompt=negative_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
eta=eta, | |
generator=generator, | |
latents=latents, | |
output_type=output_type, | |
return_dict=return_dict, | |
callback=callback, | |
callback_steps=callback_steps, | |
) | |
# swap the attention blocks back to the original state | |
temp_pipeline._swap_unet_attention_blocks() | |
return output | |
def dual_guided( | |
self, | |
prompt: Union[PIL.Image.Image, List[PIL.Image.Image]], | |
image: Union[str, List[str]], | |
text_to_image_strength: float = 0.5, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
): | |
r""" | |
The call function to the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`): | |
The prompt or prompts to guide image generation. | |
height (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
A higher guidance scale value encourages the model to generate images closely linked to the text | |
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor is generated by sampling using the supplied random `generator`. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
callback (`Callable`, *optional*): | |
A function that calls every `callback_steps` steps during inference. The function is called with the | |
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function is called. If not specified, the callback is called at | |
every step. | |
Examples: | |
```py | |
>>> from diffusers import VersatileDiffusionPipeline | |
>>> import torch | |
>>> import requests | |
>>> from io import BytesIO | |
>>> from PIL import Image | |
>>> # let's download an initial image | |
>>> url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg" | |
>>> response = requests.get(url) | |
>>> image = Image.open(BytesIO(response.content)).convert("RGB") | |
>>> text = "a red car in the sun" | |
>>> pipe = VersatileDiffusionPipeline.from_pretrained( | |
... "shi-labs/versatile-diffusion", torch_dtype=torch.float16 | |
... ) | |
>>> pipe = pipe.to("cuda") | |
>>> generator = torch.Generator(device="cuda").manual_seed(0) | |
>>> text_to_image_strength = 0.75 | |
>>> image = pipe.dual_guided( | |
... prompt=text, image=image, text_to_image_strength=text_to_image_strength, generator=generator | |
... ).images[0] | |
>>> image.save("./car_variation.png") | |
``` | |
Returns: | |
[`~pipelines.ImagePipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is | |
returned where the first element is a list with the generated images. | |
""" | |
expected_components = inspect.signature(VersatileDiffusionDualGuidedPipeline.__init__).parameters.keys() | |
components = {name: component for name, component in self.components.items() if name in expected_components} | |
temp_pipeline = VersatileDiffusionDualGuidedPipeline(**components) | |
output = temp_pipeline( | |
prompt=prompt, | |
image=image, | |
text_to_image_strength=text_to_image_strength, | |
height=height, | |
width=width, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
num_images_per_prompt=num_images_per_prompt, | |
eta=eta, | |
generator=generator, | |
latents=latents, | |
output_type=output_type, | |
return_dict=return_dict, | |
callback=callback, | |
callback_steps=callback_steps, | |
) | |
temp_pipeline._revert_dual_attention() | |
return output | |