Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from transformers import BertTokenizer | |
from transformers.activations import QuickGELUActivation as QuickGELU | |
from transformers.modeling_outputs import ( | |
BaseModelOutputWithPastAndCrossAttentions, | |
BaseModelOutputWithPooling, | |
BaseModelOutputWithPoolingAndCrossAttentions, | |
) | |
from transformers.models.blip_2.configuration_blip_2 import Blip2Config, Blip2VisionConfig | |
from transformers.models.blip_2.modeling_blip_2 import ( | |
Blip2Encoder, | |
Blip2PreTrainedModel, | |
Blip2QFormerAttention, | |
Blip2QFormerIntermediate, | |
Blip2QFormerOutput, | |
) | |
from transformers.pytorch_utils import apply_chunking_to_forward | |
from transformers.utils import ( | |
logging, | |
replace_return_docstrings, | |
) | |
logger = logging.get_logger(__name__) | |
# There is an implementation of Blip2 in `transformers` : https://github.com/huggingface/transformers/blob/main/src/transformers/models/blip_2/modeling_blip_2.py. | |
# But it doesn't support getting multimodal embeddings. So, this module can be | |
# replaced with a future `transformers` version supports that. | |
class Blip2TextEmbeddings(nn.Module): | |
"""Construct the embeddings from word and position embeddings.""" | |
def __init__(self, config): | |
super().__init__() | |
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) | |
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) | |
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load | |
# any TensorFlow checkpoint file | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
# position_ids (1, len position emb) is contiguous in memory and exported when serialized | |
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) | |
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") | |
self.config = config | |
def forward( | |
self, | |
input_ids=None, | |
position_ids=None, | |
query_embeds=None, | |
past_key_values_length=0, | |
): | |
if input_ids is not None: | |
seq_length = input_ids.size()[1] | |
else: | |
seq_length = 0 | |
if position_ids is None: | |
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length].clone() | |
if input_ids is not None: | |
embeddings = self.word_embeddings(input_ids) | |
if self.position_embedding_type == "absolute": | |
position_embeddings = self.position_embeddings(position_ids) | |
embeddings = embeddings + position_embeddings | |
if query_embeds is not None: | |
batch_size = embeddings.shape[0] | |
# repeat the query embeddings for batch size | |
query_embeds = query_embeds.repeat(batch_size, 1, 1) | |
embeddings = torch.cat((query_embeds, embeddings), dim=1) | |
else: | |
embeddings = query_embeds | |
embeddings = embeddings.to(query_embeds.dtype) | |
embeddings = self.LayerNorm(embeddings) | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
# Copy-pasted from transformers.models.blip.modeling_blip.BlipVisionEmbeddings with Blip->Blip2 | |
class Blip2VisionEmbeddings(nn.Module): | |
def __init__(self, config: Blip2VisionConfig): | |
super().__init__() | |
self.config = config | |
self.embed_dim = config.hidden_size | |
self.image_size = config.image_size | |
self.patch_size = config.patch_size | |
self.class_embedding = nn.Parameter(torch.randn(1, 1, self.embed_dim)) | |
self.patch_embedding = nn.Conv2d( | |
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, bias=False | |
) | |
self.num_patches = (self.image_size // self.patch_size) ** 2 | |
self.num_positions = self.num_patches + 1 | |
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim)) | |
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: | |
batch_size = pixel_values.shape[0] | |
target_dtype = self.patch_embedding.weight.dtype | |
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid] | |
patch_embeds = patch_embeds.flatten(2).transpose(1, 2) | |
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype) | |
embeddings = torch.cat([class_embeds, patch_embeds], dim=1) | |
embeddings = embeddings + self.position_embedding[:, : embeddings.size(1), :].to(target_dtype) | |
return embeddings | |
# The Qformer encoder, which takes the visual embeddings, and the text input, to get multimodal embeddings | |
class Blip2QFormerEncoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.layer = nn.ModuleList( | |
[Blip2QFormerLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] | |
) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
past_key_values=None, | |
use_cache=None, | |
output_attentions=False, | |
output_hidden_states=False, | |
return_dict=True, | |
query_length=0, | |
): | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
all_cross_attentions = () if output_attentions else None | |
next_decoder_cache = () if use_cache else None | |
for i in range(self.config.num_hidden_layers): | |
layer_module = self.layer[i] | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
layer_head_mask = head_mask[i] if head_mask is not None else None | |
past_key_value = past_key_values[i] if past_key_values is not None else None | |
if getattr(self.config, "gradient_checkpointing", False) and self.training: | |
if use_cache: | |
logger.warning( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs, past_key_value, output_attentions, query_length) | |
return custom_forward | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(layer_module), | |
hidden_states, | |
attention_mask, | |
layer_head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
) | |
else: | |
layer_outputs = layer_module( | |
hidden_states, | |
attention_mask, | |
layer_head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
past_key_value, | |
output_attentions, | |
query_length, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
next_decoder_cache += (layer_outputs[-1],) | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
if layer_module.has_cross_attention: | |
all_cross_attentions = all_cross_attentions + (layer_outputs[2],) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [ | |
hidden_states, | |
next_decoder_cache, | |
all_hidden_states, | |
all_self_attentions, | |
all_cross_attentions, | |
] | |
if v is not None | |
) | |
return BaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=hidden_states, | |
past_key_values=next_decoder_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
cross_attentions=all_cross_attentions, | |
) | |
# The layers making up the Qformer encoder | |
class Blip2QFormerLayer(nn.Module): | |
def __init__(self, config, layer_idx): | |
super().__init__() | |
self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
self.seq_len_dim = 1 | |
self.attention = Blip2QFormerAttention(config) | |
self.layer_idx = layer_idx | |
if layer_idx % config.cross_attention_frequency == 0: | |
self.crossattention = Blip2QFormerAttention(config, is_cross_attention=True) | |
self.has_cross_attention = True | |
else: | |
self.has_cross_attention = False | |
self.intermediate = Blip2QFormerIntermediate(config) | |
self.intermediate_query = Blip2QFormerIntermediate(config) | |
self.output_query = Blip2QFormerOutput(config) | |
self.output = Blip2QFormerOutput(config) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
past_key_value=None, | |
output_attentions=False, | |
query_length=0, | |
): | |
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2 | |
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None | |
self_attention_outputs = self.attention( | |
hidden_states, | |
attention_mask, | |
head_mask, | |
output_attentions=output_attentions, | |
past_key_value=self_attn_past_key_value, | |
) | |
attention_output = self_attention_outputs[0] | |
outputs = self_attention_outputs[1:-1] | |
present_key_value = self_attention_outputs[-1] | |
if query_length > 0: | |
query_attention_output = attention_output[:, :query_length, :] | |
if self.has_cross_attention: | |
if encoder_hidden_states is None: | |
raise ValueError("encoder_hidden_states must be given for cross-attention layers") | |
cross_attention_outputs = self.crossattention( | |
query_attention_output, | |
attention_mask, | |
head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
output_attentions=output_attentions, | |
) | |
query_attention_output = cross_attention_outputs[0] | |
# add cross attentions if we output attention weights | |
outputs = outputs + cross_attention_outputs[1:-1] | |
layer_output = apply_chunking_to_forward( | |
self.feed_forward_chunk_query, | |
self.chunk_size_feed_forward, | |
self.seq_len_dim, | |
query_attention_output, | |
) | |
if attention_output.shape[1] > query_length: | |
layer_output_text = apply_chunking_to_forward( | |
self.feed_forward_chunk, | |
self.chunk_size_feed_forward, | |
self.seq_len_dim, | |
attention_output[:, query_length:, :], | |
) | |
layer_output = torch.cat([layer_output, layer_output_text], dim=1) | |
else: | |
layer_output = apply_chunking_to_forward( | |
self.feed_forward_chunk, | |
self.chunk_size_feed_forward, | |
self.seq_len_dim, | |
attention_output, | |
) | |
outputs = (layer_output,) + outputs | |
outputs = outputs + (present_key_value,) | |
return outputs | |
def feed_forward_chunk(self, attention_output): | |
intermediate_output = self.intermediate(attention_output) | |
layer_output = self.output(intermediate_output, attention_output) | |
return layer_output | |
def feed_forward_chunk_query(self, attention_output): | |
intermediate_output = self.intermediate_query(attention_output) | |
layer_output = self.output_query(intermediate_output, attention_output) | |
return layer_output | |
# ProjLayer used to project the multimodal Blip2 embeddings to be used in the text encoder | |
class ProjLayer(nn.Module): | |
def __init__(self, in_dim, out_dim, hidden_dim, drop_p=0.1, eps=1e-12): | |
super().__init__() | |
# Dense1 -> Act -> Dense2 -> Drop -> Res -> Norm | |
self.dense1 = nn.Linear(in_dim, hidden_dim) | |
self.act_fn = QuickGELU() | |
self.dense2 = nn.Linear(hidden_dim, out_dim) | |
self.dropout = nn.Dropout(drop_p) | |
self.LayerNorm = nn.LayerNorm(out_dim, eps=eps) | |
def forward(self, x): | |
x_in = x | |
x = self.LayerNorm(x) | |
x = self.dropout(self.dense2(self.act_fn(self.dense1(x)))) + x_in | |
return x | |
# Copy-pasted from transformers.models.blip.modeling_blip.BlipVisionModel with Blip->Blip2, BLIP->BLIP_2 | |
class Blip2VisionModel(Blip2PreTrainedModel): | |
main_input_name = "pixel_values" | |
config_class = Blip2VisionConfig | |
def __init__(self, config: Blip2VisionConfig): | |
super().__init__(config) | |
self.config = config | |
embed_dim = config.hidden_size | |
self.embeddings = Blip2VisionEmbeddings(config) | |
self.pre_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | |
self.encoder = Blip2Encoder(config) | |
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | |
self.post_init() | |
def forward( | |
self, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPooling]: | |
r""" | |
Returns: | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if pixel_values is None: | |
raise ValueError("You have to specify pixel_values") | |
hidden_states = self.embeddings(pixel_values) | |
hidden_states = self.pre_layernorm(hidden_states) | |
encoder_outputs = self.encoder( | |
inputs_embeds=hidden_states, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
last_hidden_state = encoder_outputs[0] | |
last_hidden_state = self.post_layernorm(last_hidden_state) | |
pooled_output = last_hidden_state[:, 0, :] | |
pooled_output = self.post_layernorm(pooled_output) | |
if not return_dict: | |
return (last_hidden_state, pooled_output) + encoder_outputs[1:] | |
return BaseModelOutputWithPooling( | |
last_hidden_state=last_hidden_state, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
def get_input_embeddings(self): | |
return self.embeddings | |
# Qformer model, used to get multimodal embeddings from the text and image inputs | |
class Blip2QFormerModel(Blip2PreTrainedModel): | |
""" | |
Querying Transformer (Q-Former), used in BLIP-2. | |
""" | |
def __init__(self, config: Blip2Config): | |
super().__init__(config) | |
self.config = config | |
self.embeddings = Blip2TextEmbeddings(config.qformer_config) | |
self.visual_encoder = Blip2VisionModel(config.vision_config) | |
self.query_tokens = nn.Parameter(torch.zeros(1, config.num_query_tokens, config.qformer_config.hidden_size)) | |
if not hasattr(config, "tokenizer") or config.tokenizer is None: | |
self.tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", truncation_side="right") | |
else: | |
self.tokenizer = BertTokenizer.from_pretrained(config.tokenizer, truncation_side="right") | |
self.tokenizer.add_special_tokens({"bos_token": "[DEC]"}) | |
self.proj_layer = ProjLayer( | |
in_dim=config.qformer_config.hidden_size, | |
out_dim=config.qformer_config.hidden_size, | |
hidden_dim=config.qformer_config.hidden_size * 4, | |
drop_p=0.1, | |
eps=1e-12, | |
) | |
self.encoder = Blip2QFormerEncoder(config.qformer_config) | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embeddings.word_embeddings | |
def set_input_embeddings(self, value): | |
self.embeddings.word_embeddings = value | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def get_extended_attention_mask( | |
self, | |
attention_mask: torch.Tensor, | |
input_shape: Tuple[int], | |
device: torch.device, | |
has_query: bool = False, | |
) -> torch.Tensor: | |
""" | |
Makes broadcastable attention and causal masks so that future and masked tokens are ignored. | |
Arguments: | |
attention_mask (`torch.Tensor`): | |
Mask with ones indicating tokens to attend to, zeros for tokens to ignore. | |
input_shape (`Tuple[int]`): | |
The shape of the input to the model. | |
device (`torch.device`): | |
The device of the input to the model. | |
Returns: | |
`torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`. | |
""" | |
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
# ourselves in which case we just need to make it broadcastable to all heads. | |
if attention_mask.dim() == 3: | |
extended_attention_mask = attention_mask[:, None, :, :] | |
elif attention_mask.dim() == 2: | |
# Provided a padding mask of dimensions [batch_size, seq_length] | |
# - the model is an encoder, so make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] | |
extended_attention_mask = attention_mask[:, None, None, :] | |
else: | |
raise ValueError( | |
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( | |
input_shape, attention_mask.shape | |
) | |
) | |
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for | |
# masked positions, this operation will create a tensor which is 0.0 for | |
# positions we want to attend and -10000.0 for masked positions. | |
# Since we are adding it to the raw scores before the softmax, this is | |
# effectively the same as removing these entirely. | |
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility | |
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 | |
return extended_attention_mask | |
def forward( | |
self, | |
text_input=None, | |
image_input=None, | |
head_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
past_key_values=None, | |
use_cache=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, `optional`): | |
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if | |
the model is configured as a decoder. | |
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, `optional`): | |
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in | |
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of: | |
shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and | |
value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are | |
used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key | |
value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape | |
`(batch_size, sequence_length)`. | |
use_cache (`bool`, `optional`): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
""" | |
text = self.tokenizer(text_input, return_tensors="pt", padding=True) | |
text = text.to(self.device) | |
input_ids = text.input_ids | |
batch_size = input_ids.shape[0] | |
query_atts = torch.ones((batch_size, self.query_tokens.size()[1]), dtype=torch.long).to(self.device) | |
attention_mask = torch.cat([query_atts, text.attention_mask], dim=1) | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# past_key_values_length | |
past_key_values_length = ( | |
past_key_values[0][0].shape[2] - self.config.query_length if past_key_values is not None else 0 | |
) | |
query_length = self.query_tokens.shape[1] | |
embedding_output = self.embeddings( | |
input_ids=input_ids, | |
query_embeds=self.query_tokens, | |
past_key_values_length=past_key_values_length, | |
) | |
# embedding_output = self.layernorm(query_embeds) | |
# embedding_output = self.dropout(embedding_output) | |
input_shape = embedding_output.size()[:-1] | |
batch_size, seq_length = input_shape | |
device = embedding_output.device | |
image_embeds_frozen = self.visual_encoder(image_input).last_hidden_state | |
# image_embeds_frozen = torch.ones_like(image_embeds_frozen) | |
encoder_hidden_states = image_embeds_frozen | |
if attention_mask is None: | |
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) | |
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
# ourselves in which case we just need to make it broadcastable to all heads. | |
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device) | |
# If a 2D or 3D attention mask is provided for the cross-attention | |
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] | |
if encoder_hidden_states is not None: | |
if isinstance(encoder_hidden_states, list): | |
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size() | |
else: | |
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() | |
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) | |
if isinstance(encoder_attention_mask, list): | |
encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask] | |
elif encoder_attention_mask is None: | |
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) | |
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) | |
else: | |
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) | |
else: | |
encoder_extended_attention_mask = None | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
head_mask = self.get_head_mask(head_mask, self.config.qformer_config.num_hidden_layers) | |
encoder_outputs = self.encoder( | |
embedding_output, | |
attention_mask=extended_attention_mask, | |
head_mask=head_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_extended_attention_mask, | |
past_key_values=past_key_values, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
query_length=query_length, | |
) | |
sequence_output = encoder_outputs[0] | |
pooled_output = sequence_output[:, 0, :] | |
if not return_dict: | |
return self.proj_layer(sequence_output[:, :query_length, :]) | |
return BaseModelOutputWithPoolingAndCrossAttentions( | |
last_hidden_state=sequence_output, | |
pooler_output=pooled_output, | |
past_key_values=encoder_outputs.past_key_values, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
cross_attentions=encoder_outputs.cross_attentions, | |
) | |