Spaces:
Running
Running
import streamlit as st | |
from streamlit_chat import message | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.llms import CTransformers | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import FAISS | |
from langchain.memory import ConversationBufferMemory | |
#load the pdf files from the path | |
loader = DirectoryLoader('data/',glob="*.pdf",loader_cls=PyPDFLoader) | |
documents = loader.load() | |
#split text into chunks | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500,chunk_overlap=50) | |
text_chunks = text_splitter.split_documents(documents) | |
#create embeddings | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", | |
model_kwargs={'device':"cpu"}) | |
# #vectorstore | |
vector_store = FAISS.from_documents(text_chunks,embeddings) | |
# #create llm | |
llm = CTransformers(model="llama-2-7b-chat.ggmlv3.q4_0.bin",model_type="llama", | |
config={'max_new_tokens':128,'temperature':0.01}) | |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) | |
chain = ConversationalRetrievalChain.from_llm(llm=llm,chain_type='stuff', | |
retriever=vector_store.as_retriever(search_kwargs={"k":2}), | |
memory=memory) | |
st.title("Medical Chatbot ") | |
def conversation_chat(query): | |
result = chain({"question": query, "chat_history": st.session_state['history']}) | |
st.session_state['history'].append((query, result["answer"])) | |
return result["answer"] | |
def initialize_session_state(): | |
if 'history' not in st.session_state: | |
st.session_state['history'] = [] | |
if 'generated' not in st.session_state: | |
st.session_state['generated'] = ["Hello! Ask me anything about π€"] | |
if 'past' not in st.session_state: | |
st.session_state['past'] = ["Hey! π"] | |
def display_chat_history(): | |
reply_container = st.container() | |
container = st.container() | |
with container: | |
with st.form(key='my_form', clear_on_submit=True): | |
user_input = st.text_input("Question:", placeholder="Tell me how you are feeling", key='input') | |
submit_button = st.form_submit_button(label='Send') | |
if submit_button and user_input: | |
output = conversation_chat(user_input) | |
st.session_state['past'].append(user_input) | |
st.session_state['generated'].append(output) | |
if st.session_state['generated']: | |
with reply_container: | |
for i in range(len(st.session_state['generated'])): | |
message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="thumbs") | |
message(st.session_state["generated"][i], key=str(i), avatar_style="fun-emoji") | |
# Initialize session state | |
initialize_session_state() | |
# Display chat history | |
display_chat_history() |