File size: 4,216 Bytes
ba5dcdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
'''
Variants of pytorch's ImageFolder for loading image datasets with more
information, such as parallel feature channels in separate files,
cached files with lists of filenames, etc.
'''

import os, torch, re
import torch.utils.data as data
from torchvision.datasets.folder import default_loader
from PIL import Image
from collections import OrderedDict
from .progress import default_progress

def grayscale_loader(path):
    with open(path, 'rb') as f:
        return Image.open(f).convert('L')

class ParallelImageFolders(data.Dataset):
    """
    A data loader that looks for parallel image filenames, for example

    photo1/park/004234.jpg
    photo1/park/004236.jpg
    photo1/park/004237.jpg

    photo2/park/004234.png
    photo2/park/004236.png
    photo2/park/004237.png
    """
    def __init__(self, image_roots,
            transform=None,
            loader=default_loader,
            stacker=None,
            intersection=False,
            verbose=None,
            size=None):
        self.image_roots = image_roots
        self.images = make_parallel_dataset(image_roots,
                intersection=intersection, verbose=verbose)
        if len(self.images) == 0:
            raise RuntimeError("Found 0 images within: %s" % image_roots)
        if size is not None:
            self.image = self.images[:size]
        if transform is not None and not hasattr(transform, '__iter__'):
            transform = [transform for _ in image_roots]
        self.transforms = transform
        self.stacker = stacker
        self.loader = loader

    def __getitem__(self, index):
        paths = self.images[index]
        sources = [self.loader(path) for path in paths]
        # Add a common shared state dict to allow random crops/flips to be
        # coordinated.
        shared_state = {}
        for s in sources:
            s.shared_state = shared_state
        if self.transforms is not None:
            sources = [transform(source)
                    for source, transform in zip(sources, self.transforms)]
        if self.stacker is not None:
            sources = self.stacker(sources)
        else:
            sources = tuple(sources)
        return sources

    def __len__(self):
        return len(self.images)

def is_npy_file(path):
    return path.endswith('.npy') or path.endswith('.NPY')

def is_image_file(path):
    return None != re.search(r'\.(jpe?g|png)$', path, re.IGNORECASE)

def walk_image_files(rootdir, verbose=None):
    progress = default_progress(verbose)
    indexfile = '%s.txt' % rootdir
    if os.path.isfile(indexfile):
        basedir = os.path.dirname(rootdir)
        with open(indexfile) as f:
            result = sorted([os.path.join(basedir, line.strip())
                for line in progress(f.readlines(),
                    desc='Reading %s' % os.path.basename(indexfile))])
            return result
    result = []
    for dirname, _, fnames in sorted(progress(os.walk(rootdir),
            desc='Walking %s' % os.path.basename(rootdir))):
        for fname in sorted(fnames):
            if is_image_file(fname) or is_npy_file(fname):
                result.append(os.path.join(dirname, fname))
    return result

def make_parallel_dataset(image_roots, intersection=False, verbose=None):
    """
    Returns [(img1, img2), (img1, img2)..]
    """
    image_roots = [os.path.expanduser(d) for d in image_roots]
    image_sets = OrderedDict()
    for j, root in enumerate(image_roots):
        for path in walk_image_files(root, verbose=verbose):
            key = os.path.splitext(os.path.relpath(path, root))[0]
            if key not in image_sets:
                image_sets[key] = []
            if not intersection and len(image_sets[key]) != j:
                raise RuntimeError(
                    'Images not parallel: %s missing from one dir' % (key))
            image_sets[key].append(path)
    tuples = []
    for key, value in image_sets.items():
        if len(value) != len(image_roots):
            if intersection:
                continue
            else:
                raise RuntimeError(
                    'Images not parallel: %s missing from one dir' % (key))
        tuples.append(tuple(value))
    return tuples