Spaces:
Running
Running
from blacklist import bad_tags,bad_models,fav_models | |
models = [] | |
models_plus_tags=[] | |
tags_plus_models=[] | |
def list_uniq(l): | |
return sorted(set(l), key=l.index) | |
def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30, force_gpu=False, check_status=False, bad_models=bad_models): | |
from huggingface_hub import HfApi | |
api = HfApi() | |
default_tags = ["diffusers"] | |
if not sort: sort = "last_modified" | |
models = [] | |
models_plus_tags=[] | |
try: | |
model_infos = api.list_models(author=author, task="text-to-image", | |
tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit) | |
except Exception as e: | |
print(f"Error: Failed to list models.") | |
print(e) | |
return models | |
for model in model_infos: | |
if not model.private and not model.gated: | |
loadable = True | |
if not_tag and not_tag in model.tags or not loadable: continue | |
if model.id not in bad_models : | |
models.append(model.id) | |
#models_plus_tags.append([model.id,process_tags(model.tags)]) | |
models_plus_tags.append([model.id,process_tags(model.cardData.tags)]) | |
if len(models) == limit: break | |
return models , models_plus_tags | |
def find_warm_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30, force_gpu=False, check_status=False, bad_models=bad_models): | |
from huggingface_hub import HfApi | |
api = HfApi() | |
default_tags = ["diffusers"] | |
if not sort: sort = "last_modified" | |
models = [] | |
models_plus_tags=[] | |
try: | |
model_infos = api.list_models(author=author, task="text-to-image", | |
tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit, inference ="warm") | |
except Exception as e: | |
print(f"Error: Failed to list models.") | |
print(e) | |
return models | |
for model in model_infos: | |
if not model.private and not model.gated: | |
loadable = True | |
if not_tag and not_tag in model.tags or not loadable: continue | |
if model.id not in bad_models : | |
models.append(model.id) | |
#models_plus_tags.append([model.id,process_tags(model.tags)]) | |
models_plus_tags.append([model.id,process_tags(model.cardData.tags)]) | |
if len(models) == limit: break | |
return models , models_plus_tags | |
def process_tags(tags,bad_tags=bad_tags): | |
t1=True | |
new_tags=[] | |
for tag in tags: | |
if tag not in bad_tags: | |
if tag == 'en': | |
t1=False | |
if t1 : | |
new_tags.append(tag) | |
return new_tags | |
def clas_tags(models_plus_tags,min): | |
tags_plus_models=[] | |
listTemp=[] | |
listAllModels=['all',0,[]] | |
new_tag=True | |
for ent in models_plus_tags: | |
listAllModels[1]+=1 | |
listAllModels[2].append(ent[0]) | |
for tagClas in ent[1]: | |
new_tag=True | |
for tag in listTemp: | |
if tag[0] == tagClas: | |
tag[1]+=1 | |
tag[2].append(ent[0]) | |
new_tag=False | |
if new_tag: | |
listTemp.append([tagClas,1,[ent[0]]]) | |
tags_plus_models.append(listAllModels) | |
for t in listTemp: | |
if t[1]>=min and t[1]!=len(models_plus_tags): | |
tags_plus_models.append(t) | |
return tags_plus_models | |
def orga_tag(tags_plus_models): | |
output=[] | |
while(len(output)<len(tags_plus_models)): | |
max=0 | |
for tag in tags_plus_models: | |
if tag[1]>max: | |
if tag not in output: | |
max=tag[1] | |
tagMax=tag | |
output.append(tagMax) | |
return output | |
def tag_new(models,limit=40): | |
output=["NEW",0,[]] | |
if limit>len(models): | |
limit=len(models) | |
for i in range(limit): | |
output[1]+=1 | |
output[2].append(models[i]) | |
return output | |
def tag_fav(models=models,fav_models=fav_models): | |
output=["FAV",0,[]] | |
for m in fav_models: | |
if m in models: | |
output[1]+=1 | |
output[2].append(m) | |
return output | |
def update_tag(models_plus_tags,list_new_tag): | |
for m_new in list_new_tag[2]: | |
for m in models_plus_tags: | |
if m_new == m[0]: | |
m[1].append(list_new_tag[0]) | |
return models_plus_tags | |
from operator import itemgetter | |
nb_models_to_load=10000 | |
#models = find_model_list("Yntec", [], "", "last_modified", 20) | |
models , models_plus_tags = find_model_list("John6666", ["stable-diffusion-xl"], "", "last_modified", nb_models_to_load) | |
#tags_plus_models = orga_tag(clas_tags(models_plus_tags,2)) | |
tags_plus_models = orga_tag(clas_tags(sorted(models_plus_tags, key=itemgetter(0)),2)) | |
list_new=tag_new(models,nb_models_to_load) | |
models_plus_tags=update_tag(models_plus_tags,list_new) | |
tags_plus_models.insert(1,list_new) | |
list_fav=tag_fav(models) | |
if list_fav[1]>0: | |
tags_plus_models.insert(1,list_fav) | |
models_plus_tags=update_tag(models_plus_tags,list_fav) | |
#models.extend(find_model_list("John6666", ["stable-diffusion-xl"], "", "last_modified", 200)) | |
#models.extend(find_model_list("John6666", [], "", "last_modified", 20)) # The latest 20 models will be added to the models written above. | |
# Examples: | |
#models = ['yodayo-ai/kivotos-xl-2.0', 'yodayo-ai/holodayo-xl-2.1'] # specific models | |
#models = find_model_list("Yntec", [], "", "last_modified", 20) # Yntec's latest 20 models | |
#models = find_model_list("Yntec", ["anime"], "", "last_modified", 20) # Yntec's latest 20 models with 'anime' tag | |
#models = find_model_list("Yntec", [], "anime", "last_modified", 20) # Yntec's latest 20 models without 'anime' tag | |
#models = find_model_list("", [], "", "last_modified", 20) # latest 20 text-to-image models of huggingface | |
#models = find_model_list("", [], "", "downloads", 20) # monthly most downloaded 20 text-to-image models of huggingface |