deep-nude-ai / opencv_transform /maskdet_to_maskfin.py
李开祥
代码
2eacc9a
import numpy as np
import cv2
import os
import random
#My library:
from opencv_transform.annotation import BodyPart
###
#
# maskdet_to_maskfin
#
# steps:
# 1. Extract annotation
# 1.a: Filter by color
# 1.b: Find ellipses
# 1.c: Filter out ellipses by max size, and max total numbers
# 1.d: Detect Problems
# 1.e: Resolve the problems, or discard the transformation
# 2. With the body list, draw maskfin, using maskref
#
###
# create_maskfin ==============================================================================
# return:
# (<Boolean> True/False), depending on the transformation process
def create_maskfin(maskref, maskdet):
#Create a total green image, in which draw details ellipses
details = np.zeros((512,512,3), np.uint8)
details[:,:,:] = (0,255,0) # (B, G, R)
#Extract body part features:
bodypart_list = extractAnnotations(maskdet);
#Check if the list is not empty:
if bodypart_list:
#Draw body part in details image:
for obj in bodypart_list:
if obj.w < obj.h:
aMax = int(obj.h/2) #asse maggiore
aMin = int(obj.w/2) #asse minore
angle = 0 #angle
else:
aMax = int(obj.w/2)
aMin = int(obj.h/2)
angle = 90
x = int(obj.x)
y = int(obj.y)
#Draw ellipse
if obj.name == "tit":
cv2.ellipse(details,(x,y),(aMax,aMin),angle,0,360,(0,205,0),-1) #(0,0,0,50)
elif obj.name == "aur":
cv2.ellipse(details,(x,y),(aMax,aMin),angle,0,360,(0,0,255),-1) #red
elif obj.name == "nip":
cv2.ellipse(details,(x,y),(aMax,aMin),angle,0,360,(255,255,255),-1) #white
elif obj.name == "belly":
cv2.ellipse(details,(x,y),(aMax,aMin),angle,0,360,(255,0,255),-1) #purple
elif obj.name == "vag":
cv2.ellipse(details,(x,y),(aMax,aMin),angle,0,360,(255,0,0),-1) #blue
elif obj.name == "hair":
xmin = x - int(obj.w/2)
ymin = y - int(obj.h/2)
xmax = x + int(obj.w/2)
ymax = y + int(obj.h/2)
cv2.rectangle(details,(xmin,ymin),(xmax,ymax),(100,100,100),-1)
#Define the green color filter
f1 = np.asarray([0, 250, 0]) # green color filter
f2 = np.asarray([10, 255, 10])
#From maskref, extrapolate only the green mask
green_mask = cv2.bitwise_not(cv2.inRange(maskref, f1, f2)) #green is 0
# Create an inverted mask
green_mask_inv = cv2.bitwise_not(green_mask)
# Cut maskref and detail image, using the green_mask & green_mask_inv
res1 = cv2.bitwise_and(maskref, maskref, mask = green_mask)
res2 = cv2.bitwise_and(details, details, mask = green_mask_inv)
# Compone:
maskfin = cv2.add(res1, res2)
return maskfin
# extractAnnotations ==============================================================================
# input parameter:
# (<string> maskdet_img): relative path of the single maskdet image (es: testimg1/maskdet/1.png)
# return:
# (<BodyPart []> bodypart_list) - for failure/error, return an empty list []
def extractAnnotations(maskdet):
#Load the image
#image = cv2.imread(maskdet_img)
#Find body part
tits_list = findBodyPart(maskdet, "tit")
aur_list = findBodyPart(maskdet, "aur")
vag_list = findBodyPart(maskdet, "vag")
belly_list = findBodyPart(maskdet, "belly")
#Filter out parts basing on dimension (area and aspect ratio):
aur_list = filterDimParts(aur_list, 100, 1000, 0.5, 3);
tits_list = filterDimParts(tits_list, 1000, 60000, 0.2, 3);
vag_list = filterDimParts(vag_list, 10, 1000, 0.2, 3);
belly_list = filterDimParts(belly_list, 10, 1000, 0.2, 3);
#Filter couple (if parts are > 2, choose only 2)
aur_list = filterCouple(aur_list);
tits_list = filterCouple(tits_list);
#Detect a missing problem:
missing_problem = detectTitAurMissingProblem(tits_list, aur_list) #return a Number (code of the problem)
#Check if problem is SOLVEABLE:
if (missing_problem in [3,6,7,8]):
resolveTitAurMissingProblems(tits_list, aur_list, missing_problem)
#Infer the nips:
nip_list = inferNip(aur_list)
#Infer the hair:
hair_list = inferHair(vag_list)
#Return a combined list:
return tits_list + aur_list + nip_list + vag_list + hair_list + belly_list
# findBodyPart ==============================================================================
# input parameters:
# (<RGB>image, <string>part_name)
# return
# (<BodyPart[]>list)
def findBodyPart(image, part_name):
bodypart_list = [] #empty BodyPart list
#Get the correct color filter:
if part_name == "tit":
#Use combined color filter
f1 = np.asarray([0, 0, 0]) # tit color filter
f2 = np.asarray([10, 10, 10])
f3 = np.asarray([0, 0, 250]) # aur color filter
f4 = np.asarray([0, 0, 255])
color_mask1 = cv2.inRange(image, f1, f2)
color_mask2 = cv2.inRange(image, f3, f4)
color_mask = cv2.bitwise_or(color_mask1, color_mask2) #combine
elif part_name == "aur":
f1 = np.asarray([0, 0, 250]) # aur color filter
f2 = np.asarray([0, 0, 255])
color_mask = cv2.inRange(image, f1, f2)
elif part_name == "vag":
f1 = np.asarray([250, 0, 0]) # vag filter
f2 = np.asarray([255, 0, 0])
color_mask = cv2.inRange(image, f1, f2)
elif part_name == "belly":
f1 = np.asarray([250, 0, 250]) # belly filter
f2 = np.asarray([255, 0, 255])
color_mask = cv2.inRange(image, f1, f2)
#find contours:
contours, hierarchy = cv2.findContours(color_mask,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
#for every contour:
for cnt in contours:
if len(cnt)>5: #at least 5 points to fit ellipse
#(x, y), (MA, ma), angle = cv2.fitEllipse(cnt)
ellipse = cv2.fitEllipse(cnt)
#Fit Result:
x = ellipse[0][0] #center x
y = ellipse[0][1] #center y
angle = ellipse[2] #angle
aMin = ellipse[1][0]; #asse minore
aMax = ellipse[1][1]; #asse maggiore
#Detect direction:
if angle == 0:
h = aMax
w = aMin
else:
h = aMin
w = aMax
#Normalize the belly size:
if part_name == "belly":
if w<15:
w *= 2
if h<15:
h *= 2
#Normalize the vag size:
if part_name == "vag":
if w<15:
w *= 2
if h<15:
h *= 2
#Calculate Bounding Box:
xmin = int(x - (w/2))
xmax = int(x + (w/2))
ymin = int(y - (h/2))
ymax = int(y + (h/2))
bodypart_list.append(BodyPart(part_name, xmin, ymin, xmax, ymax, x, y, w, h ))
return bodypart_list
# filterDimParts ==============================================================================
# input parameters:
# (<BodyPart[]>list, <num> minimum area of part, <num> max area, <num> min aspect ratio, <num> max aspect ratio)
def filterDimParts(bp_list, min_area, max_area, min_ar, max_ar):
b_filt = []
for obj in bp_list:
a = obj.w*obj.h #Object AREA
if ((a > min_area)and(a < max_area)):
ar = obj.w/obj.h #Object ASPECT RATIO
if ((ar>min_ar)and(ar<max_ar)):
b_filt.append(obj)
return b_filt
# filterCouple ==============================================================================
# input parameters:
# (<BodyPart[]>list)
def filterCouple(bp_list):
#Remove exceed parts
if (len(bp_list)>2):
#trovare coppia (a,b) che minimizza bp_list[a].y-bp_list[b].y
min_a = 0
min_b = 1
min_diff = abs(bp_list[min_a].y-bp_list[min_b].y)
for a in range(0,len(bp_list)):
for b in range(0,len(bp_list)):
#TODO: avoid repetition (1,0) (0,1)
if a != b:
diff = abs(bp_list[a].y-bp_list[b].y)
if diff<min_diff:
min_diff = diff
min_a = a
min_b = b
b_filt = []
b_filt.append(bp_list[min_a])
b_filt.append(bp_list[min_b])
return b_filt
else:
#No change
return bp_list
# detectTitAurMissingProblem ==============================================================================
# input parameters:
# (<BodyPart[]> tits list, <BodyPart[]> aur list)
# return
# (<num> problem code)
# TIT | AUR | code | SOLVE? |
# 0 | 0 | 1 | NO |
# 0 | 1 | 2 | NO |
# 0 | 2 | 3 | YES |
# 1 | 0 | 4 | NO |
# 1 | 1 | 5 | NO |
# 1 | 2 | 6 | YES |
# 2 | 0 | 7 | YES |
# 2 | 1 | 8 | YES |
def detectTitAurMissingProblem(tits_list, aur_list):
t_len = len(tits_list)
a_len = len(aur_list)
if (t_len == 0):
if (a_len == 0):
return 1
elif (a_len == 1):
return 2
elif (a_len == 2):
return 3
else:
return -1
elif (t_len == 1):
if (a_len == 0):
return 4
elif (a_len == 1):
return 5
elif (a_len == 2):
return 6
else:
return -1
elif (t_len == 2):
if (a_len == 0):
return 7
elif (a_len == 1):
return 8
else:
return -1
else:
return -1
# resolveTitAurMissingProblems ==============================================================================
# input parameters:
# (<BodyPart[]> tits list, <BodyPart[]> aur list, problem code)
# return
# none
def resolveTitAurMissingProblems(tits_list, aur_list, problem_code):
if problem_code == 3:
random_tit_factor = random.randint(2, 5) #TOTEST
#Add the first tit:
new_w = aur_list[0].w * random_tit_factor #TOTEST
new_x = aur_list[0].x
new_y = aur_list[0].y
xmin = int(new_x - (new_w/2))
xmax = int(new_x + (new_w/2))
ymin = int(new_y - (new_w/2))
ymax = int(new_y + (new_w/2))
tits_list.append(BodyPart("tit", xmin, ymin, xmax, ymax, new_x, new_y, new_w, new_w ))
#Add the second tit:
new_w = aur_list[1].w * random_tit_factor #TOTEST
new_x = aur_list[1].x
new_y = aur_list[1].y
xmin = int(new_x - (new_w/2))
xmax = int(new_x + (new_w/2))
ymin = int(new_y - (new_w/2))
ymax = int(new_y + (new_w/2))
tits_list.append(BodyPart("tit", xmin, ymin, xmax, ymax, new_x, new_y, new_w, new_w ))
elif problem_code == 6:
#Find wich aur is full:
d1 = abs(tits_list[0].x - aur_list[0].x)
d2 = abs(tits_list[0].x - aur_list[1].x)
if d1 > d2:
#aur[0] is empty
new_x = aur_list[0].x
new_y = aur_list[0].y
else:
#aur[1] is empty
new_x = aur_list[1].x
new_y = aur_list[1].y
#Calculate Bounding Box:
xmin = int(new_x - (tits_list[0].w/2))
xmax = int(new_x + (tits_list[0].w/2))
ymin = int(new_y - (tits_list[0].w/2))
ymax = int(new_y + (tits_list[0].w/2))
tits_list.append(BodyPart("tit", xmin, ymin, xmax, ymax, new_x, new_y, tits_list[0].w, tits_list[0].w ))
elif problem_code == 7:
#Add the first aur:
new_w = tits_list[0].w * random.uniform(0.03, 0.1) #TOTEST
new_x = tits_list[0].x
new_y = tits_list[0].y
xmin = int(new_x - (new_w/2))
xmax = int(new_x + (new_w/2))
ymin = int(new_y - (new_w/2))
ymax = int(new_y + (new_w/2))
aur_list.append(BodyPart("aur", xmin, ymin, xmax, ymax, new_x, new_y, new_w, new_w ))
#Add the second aur:
new_w = tits_list[1].w * random.uniform(0.03, 0.1) #TOTEST
new_x = tits_list[1].x
new_y = tits_list[1].y
xmin = int(new_x - (new_w/2))
xmax = int(new_x + (new_w/2))
ymin = int(new_y - (new_w/2))
ymax = int(new_y + (new_w/2))
aur_list.append(BodyPart("aur", xmin, ymin, xmax, ymax, new_x, new_y, new_w, new_w ))
elif problem_code == 8:
#Find wich tit is full:
d1 = abs(aur_list[0].x - tits_list[0].x)
d2 = abs(aur_list[0].x - tits_list[1].x)
if d1 > d2:
#tit[0] is empty
new_x = tits_list[0].x
new_y = tits_list[0].y
else:
#tit[1] is empty
new_x = tits_list[1].x
new_y = tits_list[1].y
#Calculate Bounding Box:
xmin = int(new_x - (aur_list[0].w/2))
xmax = int(new_x + (aur_list[0].w/2))
ymin = int(new_y - (aur_list[0].w/2))
ymax = int(new_y + (aur_list[0].w/2))
aur_list.append(BodyPart("aur", xmin, ymin, xmax, ymax, new_x, new_y, aur_list[0].w, aur_list[0].w ))
# detectTitAurPositionProblem ==============================================================================
# input parameters:
# (<BodyPart[]> tits list, <BodyPart[]> aur list)
# return
# (<Boolean> True/False)
def detectTitAurPositionProblem(tits_list, aur_list):
diffTitsX = abs(tits_list[0].x - tits_list[1].x)
if diffTitsX < 40:
print("diffTitsX")
#Tits too narrow (orizontally)
return True
diffTitsY = abs(tits_list[0].y - tits_list[1].y)
if diffTitsY > 120:
#Tits too distanced (vertically)
print("diffTitsY")
return True
diffTitsW = abs(tits_list[0].w - tits_list[1].w)
if ((diffTitsW < 0.1)or(diffTitsW>60)):
print("diffTitsW")
#Tits too equals, or too different (width)
return True
#Check if body position is too low (face not covered by watermark)
if aur_list[0].y > 350: #tits too low
#Calculate the ratio between y and aurs distance
rapp = aur_list[0].y/(abs(aur_list[0].x - aur_list[1].x))
if rapp > 2.8:
print("aurDown")
return True
return False
# inferNip ==============================================================================
# input parameters:
# (<BodyPart[]> aur list)
# return
# (<BodyPart[]> nip list)
def inferNip(aur_list):
nip_list = []
for aur in aur_list:
#Nip rules:
# - circle (w == h)
# - min dim: 5
# - bigger if aur is bigger
nip_dim = int(5 + aur.w*random.uniform(0.03, 0.09))
#center:
x = aur.x
y = aur.y
#Calculate Bounding Box:
xmin = int(x - (nip_dim/2))
xmax = int(x + (nip_dim/2))
ymin = int(y - (nip_dim/2))
ymax = int(y + (nip_dim/2))
nip_list.append(BodyPart("nip", xmin, ymin, xmax, ymax, x, y, nip_dim, nip_dim ))
return nip_list
# inferHair (TOTEST) ==============================================================================
# input parameters:
# (<BodyPart[]> vag list)
# return
# (<BodyPart[]> hair list)
def inferHair(vag_list):
hair_list = []
#70% of chanche to add hair
if random.uniform(0.0, 1.0) > 0.3:
for vag in vag_list:
#Hair rules:
hair_w = vag.w*random.uniform(0.4, 1.5)
hair_h = vag.h*random.uniform(0.4, 1.5)
#center:
x = vag.x
y = vag.y - (hair_h/2) - (vag.h/2)
#Calculate Bounding Box:
xmin = int(x - (hair_w/2))
xmax = int(x + (hair_w/2))
ymin = int(y - (hair_h/2))
ymax = int(y + (hair_h/2))
hair_list.append(BodyPart("hair", xmin, ymin, xmax, ymax, x, y, hair_w, hair_h ))
return hair_list