Spaces:
Running
Running
# Fork of the SantaCoder demo (https://huggingface.co/spaces/bigcode/santacoder-demo) | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed | |
from transformers import pipeline | |
import os | |
import torch | |
from typing import Union, Tuple, List | |
description = """# <p style="text-align: center; color: #292b47;"> ๐๏ธ <span style='color: #3264ff;'>DeciCoder:</span> A Fast Code Generation Model๐จ </p> | |
<span style='color: #292b47;'>Welcome to <a href="https://huggingface.co/Deci/DeciCoder-1b" style="color: #3264ff;">DeciCoder</a>! | |
DeciCoder is a 1B parameter code generation model trained on The Stack dataset and released under an Apache 2.0 license. It's capable of writing code in Python, | |
JavaScript, and Java. It's a code-completion model, not an instruction-tuned model; you should prompt the model with a function signature and docstring | |
and let it complete the rest. The model can also do infilling, specify where you would like the model to complete code with the <span style='color: #3264ff;'><FILL_HERE></span> | |
token.</span>""" | |
token = os.environ["HUGGINGFACEHUB_API_TOKEN"] | |
device="cuda" if torch.cuda.is_available() else "cpu" | |
FIM_PREFIX = "<fim_prefix>" | |
FIM_MIDDLE = "<fim_middle>" | |
FIM_SUFFIX = "<fim_suffix>" | |
FIM_PAD = "<fim_pad>" | |
EOD = "<|endoftext|>" | |
GENERATION_TITLE= "<p style='font-size: 24px; color: #292b47;'>๐ป Your generated code:</p>" | |
tokenizer_fim = AutoTokenizer.from_pretrained("Deci/DeciCoder-1b", use_auth_token=token, padding_side="left") | |
tokenizer_fim.add_special_tokens({ | |
"additional_special_tokens": [EOD, FIM_PREFIX, FIM_MIDDLE, FIM_SUFFIX, FIM_PAD], | |
"pad_token": EOD, | |
}) | |
tokenizer = AutoTokenizer.from_pretrained("Deci/DeciCoder-1b", use_auth_token=token, force_download=True) | |
model = AutoModelForCausalLM.from_pretrained("Deci/DeciCoder-1b", trust_remote_code=True, use_auth_token=token, force_download=True).to(device) | |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=device) | |
def post_processing(prompt: str, completion: str) -> str: | |
""" | |
Post-processes the generated code completion with HTML styling. | |
Args: | |
prompt (str): The input code prompt. | |
completion (str): The generated code completion. | |
Returns: | |
str: The HTML-styled code with prompt and completion. | |
""" | |
completion = "<span style='color: #ff5b86;'>" + completion + "</span>" | |
prompt = "<span style='color: #7484b7;'>" + prompt + "</span>" | |
code_html = f"<br><hr><br><pre style='font-size: 12px'><code>{prompt}{completion}</code></pre><br><hr>" | |
return GENERATION_TITLE + code_html | |
def post_processing_fim(prefix: str, middle: str, suffix: str) -> str: | |
""" | |
Post-processes the FIM (fill in the middle) generated code with HTML styling. | |
Args: | |
prefix (str): The prefix part of the code. | |
middle (str): The generated middle part of the code. | |
suffix (str): The suffix part of the code. | |
Returns: | |
str: The HTML-styled code with prefix, middle, and suffix. | |
""" | |
prefix = "<span style='color: #7484b7;'>" + prefix + "</span>" | |
middle = "<span style='color: #ff5b86;'>" + middle + "</span>" | |
suffix = "<span style='color: #7484b7;'>" + suffix + "</span>" | |
code_html = f"<br><hr><br><pre style='font-size: 12px'><code>{prefix}{middle}{suffix}</code></pre><br><hr>" | |
return GENERATION_TITLE + code_html | |
def fim_generation(prompt: str, max_new_tokens: int, temperature: float) -> str: | |
""" | |
Generates code for FIM (fill in the middle) task. | |
Args: | |
prompt (str): The input code prompt with <FILL_HERE> token. | |
max_new_tokens (int): Maximum number of tokens to generate. | |
temperature (float): Sampling temperature for generation. | |
Returns: | |
str: The HTML-styled code with filled missing part. | |
""" | |
prefix = prompt.split("<FILL_HERE>")[0] | |
suffix = prompt.split("<FILL_HERE>")[1] | |
[middle] = infill((prefix, suffix), max_new_tokens, temperature) | |
return post_processing_fim(prefix, middle, suffix) | |
def extract_fim_part(s: str) -> str: | |
""" | |
Extracts the FIM (fill in the middle) part from the generated string. | |
Args: | |
s (str): The generated string with FIM tokens. | |
Returns: | |
str: The extracted FIM part. | |
""" | |
# Find the index of | |
start = s.find(FIM_MIDDLE) + len(FIM_MIDDLE) | |
stop = s.find(EOD, start) or len(s) | |
return s[start:stop] | |
def infill(prefix_suffix_tuples: Union[Tuple[str, str], List[Tuple[str, str]]], max_new_tokens: int, temperature: float) -> List[str]: | |
""" | |
Generates the infill for the given prefix and suffix tuples. | |
Args: | |
prefix_suffix_tuples (Union[Tuple[str, str], List[Tuple[str, str]]]): Prefix and suffix tuples. | |
max_new_tokens (int): Maximum number of tokens to generate. | |
temperature (float): Sampling temperature for generation. | |
Returns: | |
List[str]: The list of generated infill strings. | |
""" | |
if type(prefix_suffix_tuples) == tuple: | |
prefix_suffix_tuples = [prefix_suffix_tuples] | |
prompts = [f"{FIM_PREFIX}{prefix}{FIM_SUFFIX}{suffix}{FIM_MIDDLE}" for prefix, suffix in prefix_suffix_tuples] | |
# `return_token_type_ids=False` is essential, or we get nonsense output. | |
inputs = tokenizer_fim(prompts, return_tensors="pt", padding=True, return_token_type_ids=False).to(device) | |
with torch.no_grad(): | |
outputs = model.generate( | |
**inputs, | |
do_sample=True, | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
pad_token_id=tokenizer.pad_token_id | |
) | |
# WARNING: cannot use skip_special_tokens, because it blows away the FIM special tokens. | |
return [ | |
extract_fim_part(tokenizer_fim.decode(tensor, skip_special_tokens=False)) for tensor in outputs | |
] | |
def code_generation(prompt: str, max_new_tokens: int, temperature: float = 0.2, seed: int = 42) -> str: | |
""" | |
Generates code based on the given prompt. Handles both regular and FIM (Fill-In-Missing) generation. | |
Args: | |
prompt (str): The input code prompt. | |
max_new_tokens (int): Maximum number of tokens to generate. | |
temperature (float, optional): Sampling temperature for generation. Defaults to 0.2. | |
seed (int, optional): Random seed for reproducibility. Defaults to 42. | |
Returns: | |
str: The HTML-styled generated code. | |
""" | |
if "<FILL_HERE>" in prompt: | |
return fim_generation(prompt, max_new_tokens, temperature=temperature) | |
else: | |
completion = pipe(prompt, do_sample=True, top_p=0.95, temperature=temperature, max_new_tokens=max_new_tokens)[0]['generated_text'] | |
completion = completion[len(prompt):] | |
return post_processing(prompt, completion) | |
demo = gr.Blocks( | |
css=".gradio-container {background-color: #FAFBFF; color: #292b47}" | |
) | |
with demo: | |
with gr.Row(): | |
_, colum_2, _ = gr.Column(scale=1), gr.Column(scale=6), gr.Column(scale=1) | |
with colum_2: | |
gr.Markdown(value=description) | |
code = gr.Code(lines=5, language="python", label="Input code", value="def nth_element_in_fibonnaci(element):\n \"\"\"Returns the nth element of the Fibonnaci sequence.\"\"\"") | |
with gr.Accordion("Additional settings", open=True): | |
max_new_tokens= gr.Slider( | |
minimum=8, | |
maximum=2048, | |
step=1, | |
value=80, | |
label="Number of tokens to generate", | |
) | |
temperature = gr.Slider( | |
minimum=0.1, | |
maximum=2.5, | |
step=0.01, | |
value=0.2, | |
label="Temperature", | |
) | |
seed = gr.inputs.Number( | |
default=42, | |
label="Enter a seed value (integer)" | |
) | |
run = gr.Button(value="๐จ๐ฝโ๐ป Generate code", size='lg') | |
output = gr.HTML(label="๐ป Your generated code") | |
event = run.click(code_generation, [code, max_new_tokens, temperature, seed], output, api_name="predict") | |
gr.HTML(label="Keep in touch", value="<img src='https://huggingface.co/spaces/Deci/DeciCoder-Demo/resolve/main/deci-coder-banner.png' alt='Keep in touch' style='display: block; color: #292b47; margin: auto; max-width: 800px;'>") | |
demo.launch() |