File size: 13,925 Bytes
4a2500d
 
9e9d144
4a2500d
 
6a9250c
4a2500d
 
6a9250c
4a2500d
 
 
 
510255e
4a2500d
6a9250c
 
7ecd3fc
4a2500d
56d5bbe
 
 
 
 
4a2500d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1fb6e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a2500d
7cb73e5
4a2500d
 
6a9250c
4a2500d
 
 
 
 
2a4a91e
4a2500d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a9250c
 
4a2500d
 
 
 
 
 
 
510255e
 
 
 
379b6d3
510255e
 
 
 
 
 
 
 
 
 
 
6a9250c
510255e
 
4a2500d
510255e
 
a1fb6e9
510255e
 
 
 
4a2500d
379b6d3
 
6a9250c
 
 
 
 
 
 
 
 
 
 
 
379b6d3
6a9250c
 
 
 
 
379b6d3
 
 
 
6a9250c
379b6d3
6a9250c
 
 
510255e
6a9250c
 
 
 
 
 
 
379b6d3
6a9250c
 
225f120
 
6a9250c
 
225f120
 
 
 
6a9250c
 
225f120
6a9250c
379b6d3
225f120
379b6d3
 
 
 
225f120
d278cd3
379b6d3
225f120
379b6d3
 
 
 
 
 
 
6a9250c
379b6d3
 
 
6a9250c
510255e
 
 
 
 
 
 
 
379b6d3
510255e
225f120
 
 
 
 
 
 
 
 
 
379b6d3
c72212d
225f120
 
 
 
 
 
 
 
 
 
379b6d3
 
 
 
 
 
 
6a9250c
 
 
 
 
 
 
 
 
510255e
 
 
 
 
6a9250c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
379b6d3
d0792a2
 
 
 
 
 
 
 
 
 
 
 
 
69840d6
379b6d3
 
 
 
 
 
 
 
 
 
6a9250c
 
87f1b01
6d91a84
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import os
import random
import spaces
import gradio as gr
import numpy as np
import PIL.Image
import torch
import torchvision.transforms.functional as TF

from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
from controlnet_aux import PidiNetDetector, HEDdetector
from diffusers.utils import load_image
from huggingface_hub import HfApi, snapshot_download
from pathlib import Path
from PIL import Image, ImageOps
import cv2
from gradio_imageslider import ImageSlider

js_func = """
function refresh() {
    const url = new URL(window.location);
}
"""
def nms(x, t, s):
    x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)

    f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
    f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
    f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
    f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)

    y = np.zeros_like(x)

    for f in [f1, f2, f3, f4]:
        np.putmask(y, cv2.dilate(x, kernel=f) == x, x)

    z = np.zeros_like(y, dtype=np.uint8)
    z[y > t] = 255
    return z

def HWC3(x):
    assert x.dtype == np.uint8
    if x.ndim == 2:
        x = x[:, :, None]
    assert x.ndim == 3
    H, W, C = x.shape
    assert C == 1 or C == 3 or C == 4
    if C == 3:
        return x
    if C == 1:
        return np.concatenate([x, x, x], axis=2)
    if C == 4:
        color = x[:, :, 0:3].astype(np.float32)
        alpha = x[:, :, 3:4].astype(np.float32) / 255.0
        y = color * alpha + 255.0 * (1.0 - alpha)
        y = y.clip(0, 255).astype(np.uint8)
        return y

DESCRIPTION = ''''''

if not torch.cuda.is_available():
    DESCRIPTION += ""

style_list = [
    {
        "name": "(No style)",
        "prompt": "{prompt}",
        "negative_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
    },
    {
        "name": "Cinematic",
        "prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
        "negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
    },
    {
        "name": "3D Model",
        "prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
        "negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
    },
    {
        "name": "Anime",
        "prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime,  highly detailed",
        "negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
    },
    {
        "name": "Digital Art",
        "prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
        "negative_prompt": "photo, photorealistic, realism, ugly",
    },
    {
        "name": "Photographic",
        "prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
        "negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
    },
    {
        "name": "Pixel art",
        "prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
        "negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
    },
    {
        "name": "Fantasy art",
        "prompt": "ethereal fantasy concept art of  {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
        "negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
    },
    {
        "name": "Neonpunk",
        "prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
        "negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
    },
    {
        "name": "Manga",
        "prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style",
        "negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
    },
]

styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "(No style)"


def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
    p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    return p.replace("{prompt}", positive), n + negative

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

eulera_scheduler = EulerAncestralDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler")

# Download the model files
ckpt_dir_pony = snapshot_download(repo_id="John6666/pony-realism-v21main-sdxl")
ckpt_dir_cyber = snapshot_download(repo_id="John6666/cyberrealistic-pony-v61-sdxl")
ckpt_dir_stallion = snapshot_download(repo_id="John6666/stallion-dreams-pony-realistic-v1-sdxl")

# Load the models
vae_pony = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir_pony, "vae"), torch_dtype=torch.float16)
vae_cyber = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir_cyber, "vae"), torch_dtype=torch.float16)
vae_stallion = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir_stallion, "vae"), torch_dtype=torch.float16)

controlnet_pony = ControlNetModel.from_pretrained("xinsir/controlnet-union-sdxl-1.0", torch_dtype=torch.float16)
controlnet_cyber = ControlNetModel.from_pretrained("xinsir/controlnet-union-sdxl-1.0", torch_dtype=torch.float16)
controlnet_stallion = ControlNetModel.from_pretrained("xinsir/controlnet-union-sdxl-1.0", torch_dtype=torch.float16)

pipe_pony = StableDiffusionXLControlNetPipeline.from_pretrained(
    ckpt_dir_pony, controlnet=controlnet_pony, vae=vae_pony, torch_dtype=torch.float16, scheduler=eulera_scheduler
)
pipe_cyber = StableDiffusionXLControlNetPipeline.from_pretrained(
    ckpt_dir_cyber, controlnet=controlnet_cyber, vae=vae_cyber, torch_dtype=torch.float16, scheduler=eulera_scheduler
)
pipe_stallion = StableDiffusionXLControlNetPipeline.from_pretrained(
    ckpt_dir_stallion, controlnet=controlnet_stallion, vae=vae_stallion, torch_dtype=torch.float16, scheduler=eulera_scheduler
)

pipe_pony.to(device)
pipe_cyber.to(device)
pipe_stallion.to(device)

MAX_SEED = np.iinfo(np.int32).max
processor = HEDdetector.from_pretrained('lllyasviel/Annotators')
def nms(x, t, s):
    x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)

    f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
    f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
    f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
    f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)

    y = np.zeros_like(x)

    for f in [f1, f2, f3, f4]:
        np.putmask(y, cv2.dilate(x, kernel=f) == x, x)

    z = np.zeros_like(y, dtype=np.uint8)
    z[y > t] = 255
    return z

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

@spaces.GPU
def run(
    image: dict,
    prompt: str,
    negative_prompt: str,
    model_choice: str,  # Add this new input
    style_name: str = DEFAULT_STYLE_NAME,
    num_steps: int = 25,
    guidance_scale: float = 5,
    controlnet_conditioning_scale: float = 1.0,
    seed: int = 0,
    use_hed: bool = False,
    use_canny: bool = False,
    progress=gr.Progress(track_tqdm=True),
) -> PIL.Image.Image:
    # Get the composite image from the EditorValue dict
    composite_image = image['composite']
    width, height = composite_image.size
    
    # Calculate new dimensions to fit within 1024x1024 while maintaining aspect ratio
    max_size = 1024
    ratio = min(max_size / width, max_size / height)
    new_width = int(width * ratio)
    new_height = int(height * ratio)
    
    # Resize the image
    resized_image = composite_image.resize((new_width, new_height), Image.LANCZOS)
    
    if use_canny:
        controlnet_img = np.array(resized_image)
        controlnet_img = cv2.Canny(controlnet_img, 100, 200)
        controlnet_img = HWC3(controlnet_img)
        image = Image.fromarray(controlnet_img)
    elif not use_hed:
        controlnet_img = resized_image
        image = resized_image
    else:
        controlnet_img = processor(resized_image, scribble=False)
        controlnet_img = np.array(controlnet_img)
        controlnet_img = nms(controlnet_img, 127, 3)
        controlnet_img = cv2.GaussianBlur(controlnet_img, (0, 0), 3)
        random_val = int(round(random.uniform(0.01, 0.10), 2) * 255)
        controlnet_img[controlnet_img > random_val] = 255
        controlnet_img[controlnet_img < 255] = 0
        image = Image.fromarray(controlnet_img)
    
    prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)

    generator = torch.Generator(device=device).manual_seed(seed)
    
    # Select the appropriate pipe based on the model choice
    if model_choice == "Pony Realism v21":
        pipe = pipe_pony
    elif model_choice == "Cyber Realistic Pony v61":
        pipe = pipe_cyber
    else:  # "Stallion Dreams Pony Realistic v1"
        pipe = pipe_stallion

    if use_canny:
        out = pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            image=image,
            num_inference_steps=num_steps,
            generator=generator,
            controlnet_conditioning_scale=controlnet_conditioning_scale,
            guidance_scale=guidance_scale,
            width=new_width,
            height=new_height,
        ).images[0]
    else:
        out = pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            image=image,
            num_inference_steps=num_steps,
            generator=generator,
            controlnet_conditioning_scale=controlnet_conditioning_scale,
            guidance_scale=guidance_scale,
            width=new_width,
            height=new_height,
        ).images[0]

    return (controlnet_img, out)

with gr.Blocks(css="style.css", js=js_func) as demo:
    gr.Markdown(DESCRIPTION, elem_id="description")
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
    )

    with gr.Row():
        with gr.Column():
            with gr.Group():
                image = gr.ImageEditor(type="pil", label="Sketch your image or upload one", width=512, height=512)
                prompt = gr.Textbox(label="Prompt")
                model_choice = gr.Dropdown(
                    ["Pony Realism v21", "Cyber Realistic Pony v61", "Stallion Dreams Pony Realistic v1"],
                    label="Model Choice",
                    value="Pony Realism v21"
                )
                use_hed = gr.Checkbox(label="use HED detector", value=False, info="check this box if you upload an image and want to turn it to a sketch")
                use_canny = gr.Checkbox(label="use Canny", value=False, info="check this to use ControlNet canny instead of scribble")
                run_button = gr.Button("Run")
            with gr.Accordion("Advanced options", open=False):
                negative_prompt = gr.Textbox(
                    label="Negative prompt",
                    value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
                )
                num_steps = gr.Slider(
                    label="Number of steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=25,
                )
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.1,
                    maximum=10.0,
                    step=0.1,
                    value=5,
                )
                controlnet_conditioning_scale = gr.Slider(
                    label="controlnet conditioning scale",
                    minimum=0.5,
                    maximum=5.0,
                    step=0.1,
                    value=0.9,
                )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
               
        with gr.Column():
            with gr.Group():
                image_slider = ImageSlider(position=0.5)


    inputs = [
        image,
        prompt,
        negative_prompt,
        model_choice,
        style,  # Replace 'style_name' with 'style'
        num_steps,
        guidance_scale,
        controlnet_conditioning_scale,
        seed,
        use_hed,
        use_canny
    ]

    outputs = [image_slider]
    run_button.click(
        fn=randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
        api_name=False,
    ).then(lambda x: None, inputs=None, outputs=image_slider).then(
        fn=run, inputs=inputs, outputs=outputs
    )
    
    

demo.queue().launch(show_error=True, ssl_verify=False)