Dea22 commited on
Commit
dd5de47
1 Parent(s): cbdbb39

Upload 2 files

Browse files
Files changed (2) hide show
  1. Final.ipynb +152 -0
  2. requirements.txt +2 -0
Final.ipynb ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "id": "896cacc6",
7
+ "metadata": {},
8
+ "outputs": [
9
+ {
10
+ "name": "stdout",
11
+ "output_type": "stream",
12
+ "text": [
13
+ "Running on local URL: http://127.0.0.1:7860\n",
14
+ "\n",
15
+ "To create a public link, set `share=True` in `launch()`.\n"
16
+ ]
17
+ },
18
+ {
19
+ "data": {
20
+ "text/html": [
21
+ "<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
22
+ ],
23
+ "text/plain": [
24
+ "<IPython.core.display.HTML object>"
25
+ ]
26
+ },
27
+ "metadata": {},
28
+ "output_type": "display_data"
29
+ },
30
+ {
31
+ "data": {
32
+ "text/plain": []
33
+ },
34
+ "execution_count": 1,
35
+ "metadata": {},
36
+ "output_type": "execute_result"
37
+ }
38
+ ],
39
+ "source": [
40
+ "import numpy as np\n",
41
+ "import matplotlib.pyplot as plt\n",
42
+ "from sklearn.linear_model import MultiTaskLasso, Lasso\n",
43
+ "import gradio as gr\n",
44
+ "\n",
45
+ "rng = np.random.RandomState(42)\n",
46
+ "\n",
47
+ "# Generate some 2D coefficients with sine waves with random frequency and phase\n",
48
+ "def make_plot(n_samples, n_features, n_tasks, n_relevant_features, alpha):\n",
49
+ " \n",
50
+ " coef = np.zeros((n_tasks, n_features))\n",
51
+ " times = np.linspace(0, 2 * np.pi, n_tasks)\n",
52
+ " for k in range(n_relevant_features):\n",
53
+ " coef[:, k] = np.sin((1.0 + rng.randn(1)) * times + 3 * rng.randn(1))\n",
54
+ " \n",
55
+ " X = rng.randn(n_samples, n_features)\n",
56
+ " Y = np.dot(X, coef.T) + rng.randn(n_samples, n_tasks)\n",
57
+ " \n",
58
+ " coef_lasso_ = np.array([Lasso(alpha=0.5).fit(X, y).coef_ for y in Y.T])\n",
59
+ " coef_multi_task_lasso_ = MultiTaskLasso(alpha=alpha).fit(X, Y).coef_\n",
60
+ " \n",
61
+ " fig = plt.figure(figsize=(8, 5))\n",
62
+ " \n",
63
+ " feature_to_plot = 0\n",
64
+ " fig = plt.figure()\n",
65
+ " lw = 2\n",
66
+ " plt.plot(coef[:, feature_to_plot], color=\"seagreen\", linewidth=lw, label=\"Ground truth\")\n",
67
+ " plt.plot(\n",
68
+ " coef_lasso_[:, feature_to_plot], color=\"cornflowerblue\", linewidth=lw, label=\"Lasso\"\n",
69
+ " )\n",
70
+ " plt.plot(\n",
71
+ " coef_multi_task_lasso_[:, feature_to_plot],\n",
72
+ " color=\"gold\",\n",
73
+ " linewidth=lw,\n",
74
+ " label=\"MultiTaskLasso\",\n",
75
+ " )\n",
76
+ " plt.legend(loc=\"upper center\")\n",
77
+ " plt.axis(\"tight\")\n",
78
+ " plt.ylim([-1.1, 1.1])\n",
79
+ " fig.suptitle(\"Lasso, MultiTaskLasso and Ground truth time series\")\n",
80
+ " return fig\n",
81
+ " \n",
82
+ " \n",
83
+ "model_card=f\"\"\"\n",
84
+ "## Description\n",
85
+ "The multi-task lasso allows to fit multiple regression problems jointly enforcing the selected\n",
86
+ "features to be the same across tasks. This example simulates sequential measurements, each task \n",
87
+ "is a time instant, and the relevant features vary in amplitude over time while being the same. \n",
88
+ "The multi-task lasso imposes that features that are selected at one time point are select \n",
89
+ "for all time point. This makes feature selection by the Lasso more stable.\n",
90
+ "## Model\n",
91
+ "currentmodule: sklearn.linear_model\n",
92
+ "class:`Lasso` and class: `MultiTaskLasso` are used in this example.\n",
93
+ "Plots represent Lasso, MultiTaskLasso and Ground truth time series\n",
94
+ "\"\"\"\n",
95
+ "\n",
96
+ "with gr.Blocks() as demo:\n",
97
+ " gr.Markdown('''\n",
98
+ " <div>\n",
99
+ " <h1 style='text-align: center'> Joint feature selection with multi-task Lasso </h1>\n",
100
+ " </div>\n",
101
+ " ''')\n",
102
+ " gr.Markdown(model_card)\n",
103
+ " gr.Markdown(\"Original example Author: Alexandre Gramfort <[email protected]>\")\n",
104
+ " gr.Markdown(\n",
105
+ " \"Iterative conversion by: <a href=\\\"https://github.com/DeaMariaLeon\\\">Dea María Léon</a>\"\n",
106
+ " )\n",
107
+ " n_samples = gr.Slider(50,500,value=100,step=50,label='Select number of samples')\n",
108
+ " n_features = gr.Slider(5,50,value=30,step=5,label='Select number of features')\n",
109
+ " n_tasks = gr.Slider(5,50,value=40,step=5,label='Select number of tasks')\n",
110
+ " n_relevant_features = gr.Slider(1,10,value=5,step=1,label='Select number of relevant_features')\n",
111
+ " with gr.Column():\n",
112
+ " with gr.Tab('Select Alpha Range'):\n",
113
+ " alpha = gr.Slider(0,10,value=1.0,step=0.5,label='alpha')\n",
114
+ " \n",
115
+ " btn = gr.Button(value = 'Submit')\n",
116
+ "\n",
117
+ " btn.click(make_plot,inputs=[n_samples,n_features, n_tasks, n_relevant_features, alpha],outputs=[gr.Plot()])\n",
118
+ "\n",
119
+ "demo.launch()"
120
+ ]
121
+ },
122
+ {
123
+ "cell_type": "code",
124
+ "execution_count": null,
125
+ "id": "c8043d31",
126
+ "metadata": {},
127
+ "outputs": [],
128
+ "source": []
129
+ }
130
+ ],
131
+ "metadata": {
132
+ "kernelspec": {
133
+ "display_name": "scikit-ex",
134
+ "language": "python",
135
+ "name": "scikit-ex"
136
+ },
137
+ "language_info": {
138
+ "codemirror_mode": {
139
+ "name": "ipython",
140
+ "version": 3
141
+ },
142
+ "file_extension": ".py",
143
+ "mimetype": "text/x-python",
144
+ "name": "python",
145
+ "nbconvert_exporter": "python",
146
+ "pygments_lexer": "ipython3",
147
+ "version": "3.11.2"
148
+ }
149
+ },
150
+ "nbformat": 4,
151
+ "nbformat_minor": 5
152
+ }
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ matplotlib==3.6.3
2
+ scikit-learn==1.2.1