rvc-inference / app_multi.py
DJQmUKV
feat: sync with latest code, added legacy v1 model support
2c97e10
raw
history blame
14.6 kB
from typing import Union
from argparse import ArgumentParser
import asyncio
import json
import hashlib
from os import path, getenv
import gradio as gr
import torch
import numpy as np
import librosa
import edge_tts
import config
import util
from infer_pack.models import (
SynthesizerTrnMs256NSFsid,
SynthesizerTrnMs256NSFsid_nono,
SynthesizerTrnMs768NSFsid,
SynthesizerTrnMs768NSFsid_nono
)
from vc_infer_pipeline import VC
# Reference: https://huggingface.co/spaces/zomehwh/rvc-models/blob/main/app.py#L21 # noqa
in_hf_space = getenv('SYSTEM') == 'spaces'
# Argument parsing
arg_parser = ArgumentParser()
arg_parser.add_argument(
'--hubert',
default=getenv('RVC_HUBERT', 'hubert_base.pt'),
help='path to hubert base model (default: hubert_base.pt)'
)
arg_parser.add_argument(
'--config',
default=getenv('RVC_MULTI_CFG', 'multi_config.json'),
help='path to config file (default: multi_config.json)'
)
arg_parser.add_argument(
'--bind',
default=getenv('RVC_LISTEN_ADDR', '127.0.0.1'),
help='gradio server listen address (default: 127.0.0.1)'
)
arg_parser.add_argument(
'--port',
default=getenv('RVC_LISTEN_PORT', '7860'),
type=int,
help='gradio server listen port (default: 7860)'
)
arg_parser.add_argument(
'--share',
action='store_true',
help='let gradio create a public link for you'
)
arg_parser.add_argument(
'--api',
action='store_true',
help='enable api endpoint'
)
arg_parser.add_argument(
'--cache-examples',
action='store_true',
help='enable example caching, please remember delete gradio_cached_examples folder when example config has been modified' # noqa
)
args = arg_parser.parse_args()
app_css = '''
#model_info img {
max-width: 100px;
max-height: 100px;
float: right;
}
#model_info p {
margin: unset;
}
'''
app = gr.Blocks(
theme=gr.themes.Glass(),
css=app_css,
analytics_enabled=False
)
# Load hubert model
hubert_model = util.load_hubert_model(config.device, args.hubert)
hubert_model.eval()
# Load models
multi_cfg = json.load(open(args.config, 'r'))
loaded_models = []
for model_name in multi_cfg.get('models'):
print(f'Loading model: {model_name}')
# Load model info
model_info = json.load(
open(path.join('model', model_name, 'config.json'), 'r')
)
# Load RVC checkpoint
cpt = torch.load(
path.join('model', model_name, model_info['model']),
map_location='cpu'
)
tgt_sr = cpt['config'][-1]
cpt['config'][-3] = cpt['weight']['emb_g.weight'].shape[0] # n_spk
cpt_version = cpt.get('version', 'v1')
print(f'Model version: {cpt_version}')
if_f0 = cpt.get('f0', 1)
net_g: Union[
SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono,
SynthesizerTrnMs768NSFsid, SynthesizerTrnMs768NSFsid_nono
]
if if_f0 == 1:
if cpt_version == 'v2':
net_g = SynthesizerTrnMs768NSFsid(
*cpt['config'],
is_half=config.is_half
)
else:
net_g = SynthesizerTrnMs256NSFsid(
*cpt['config'],
is_half=config.is_half
)
else:
if cpt_version == 'v2':
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt['config'])
else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt['config'])
del net_g.enc_q
# According to original code, this thing seems necessary.
print(net_g.load_state_dict(cpt['weight'], strict=False))
net_g.eval().to(config.device)
net_g = net_g.half() if util.is_half(config.device) else net_g.float()
vc = VC(tgt_sr, config)
loaded_models.append(dict(
name=model_name,
metadata=model_info,
vc=vc,
net_g=net_g,
if_f0=if_f0,
target_sr=tgt_sr,
version=cpt_version
))
print(f'Models loaded: {len(loaded_models)}')
# Edge TTS speakers
tts_speakers_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices()) # noqa
# https://github.com/fumiama/Retrieval-based-Voice-Conversion-WebUI/blob/main/infer-web.py#L118 # noqa
def vc_func(
input_audio, model_index, pitch_adjust, f0_method, feat_ratio,
filter_radius, rms_mix_rate, resample_option
):
if input_audio is None:
return (None, 'Please provide input audio.')
if model_index is None:
return (None, 'Please select a model.')
model = loaded_models[model_index]
# Reference: so-vits
(audio_samp, audio_npy) = input_audio
# https://huggingface.co/spaces/zomehwh/rvc-models/blob/main/app.py#L49
if (audio_npy.shape[0] / audio_samp) > 30 and in_hf_space:
return (None, 'Input audio is longer than 30 secs.')
# Bloody hell: https://stackoverflow.com/questions/26921836/
if audio_npy.dtype != np.float32: # :thonk:
audio_npy = (
audio_npy / np.iinfo(audio_npy.dtype).max
).astype(np.float32)
if len(audio_npy.shape) > 1:
audio_npy = librosa.to_mono(audio_npy.transpose(1, 0))
if audio_samp != 16000:
audio_npy = librosa.resample(
audio_npy,
orig_sr=audio_samp,
target_sr=16000
)
pitch_int = int(pitch_adjust)
resample = (
0 if resample_option == 'Disable resampling'
else int(resample_option)
)
times = [0, 0, 0]
checksum = hashlib.sha512()
checksum.update(audio_npy.tobytes())
output_audio = model['vc'].pipeline(
hubert_model,
model['net_g'],
model['metadata'].get('speaker_id', 0),
audio_npy,
checksum.hexdigest(),
times,
pitch_int,
f0_method,
path.join('model', model['name'], model['metadata']['feat_index']),
feat_ratio,
model['if_f0'],
filter_radius,
model['target_sr'],
resample,
rms_mix_rate,
model['version']
)
out_sr = (
resample if resample >= 16000 and model['target_sr'] != resample
else model['target_sr']
)
print(f'npy: {times[0]}s, f0: {times[1]}s, infer: {times[2]}s')
return ((out_sr, output_audio), 'Success')
async def edge_tts_vc_func(
input_text, model_index, tts_speaker, pitch_adjust, f0_method, feat_ratio,
filter_radius, rms_mix_rate, resample_option
):
if input_text is None:
return (None, 'Please provide TTS text.')
if tts_speaker is None:
return (None, 'Please select TTS speaker.')
if model_index is None:
return (None, 'Please select a model.')
speaker = tts_speakers_list[tts_speaker]['ShortName']
(tts_np, tts_sr) = await util.call_edge_tts(speaker, input_text)
return vc_func(
(tts_sr, tts_np),
model_index,
pitch_adjust,
f0_method,
feat_ratio,
filter_radius,
rms_mix_rate,
resample_option
)
def update_model_info(model_index):
if model_index is None:
return str(
'### Model info\n'
'Please select a model from dropdown above.'
)
model = loaded_models[model_index]
model_icon = model['metadata'].get('icon', '')
return str(
'### Model info\n'
'![model icon]({icon})'
'**{name}**\n\n'
'Author: {author}\n\n'
'Source: {source}\n\n'
'{note}'
).format(
name=model['metadata'].get('name'),
author=model['metadata'].get('author', 'Anonymous'),
source=model['metadata'].get('source', 'Unknown'),
note=model['metadata'].get('note', ''),
icon=(
model_icon
if model_icon.startswith(('http://', 'https://'))
else '/file/model/%s/%s' % (model['name'], model_icon)
)
)
def _example_vc(
input_audio, model_index, pitch_adjust, f0_method, feat_ratio,
filter_radius, rms_mix_rate, resample_option
):
(audio, message) = vc_func(
input_audio, model_index, pitch_adjust, f0_method, feat_ratio,
filter_radius, rms_mix_rate, resample_option
)
return (
audio,
message,
update_model_info(model_index)
)
async def _example_edge_tts(
input_text, model_index, tts_speaker, pitch_adjust, f0_method, feat_ratio,
filter_radius, rms_mix_rate, resample_option
):
(audio, message) = await edge_tts_vc_func(
input_text, model_index, tts_speaker, pitch_adjust, f0_method,
feat_ratio, filter_radius, rms_mix_rate, resample_option
)
return (
audio,
message,
update_model_info(model_index)
)
with app:
gr.Markdown(
'## Simple, Stupid RVC Inference WebUI\n'
'Another RVC inference WebUI based on [RVC-WebUI](https://github.com/fumiama/Retrieval-based-Voice-Conversion-WebUI), ' # noqa
'some code and features inspired from so-vits and [zomehwh/rvc-models](https://huggingface.co/spaces/zomehwh/rvc-models).\n' # noqa
)
with gr.Row():
with gr.Column():
with gr.Tab('Audio conversion'):
input_audio = gr.Audio(label='Input audio')
vc_convert_btn = gr.Button('Convert', variant='primary')
with gr.Tab('TTS conversion'):
tts_input = gr.TextArea(
label='TTS input text'
)
tts_speaker = gr.Dropdown(
[
'%s (%s)' % (
s['FriendlyName'],
s['Gender']
)
for s in tts_speakers_list
],
label='TTS speaker',
type='index'
)
tts_convert_btn = gr.Button('Convert', variant='primary')
pitch_adjust = gr.Slider(
label='Pitch',
minimum=-24,
maximum=24,
step=1,
value=0
)
f0_method = gr.Radio(
label='f0 methods',
choices=['pm', 'harvest'],
value='pm',
interactive=True
)
with gr.Accordion('Advanced options', open=False):
feat_ratio = gr.Slider(
label='Feature ratio',
minimum=0,
maximum=1,
step=0.1,
value=0.6
)
filter_radius = gr.Slider(
label='Filter radius',
minimum=0,
maximum=7,
step=1,
value=3
)
rms_mix_rate = gr.Slider(
label='Volume envelope mix rate',
minimum=0,
maximum=1,
step=0.1,
value=1
)
resample_rate = gr.Dropdown(
[
'Disable resampling',
'16000',
'22050',
'44100',
'48000'
],
label='Resample rate',
value='Disable resampling'
)
with gr.Column():
# Model select
model_index = gr.Dropdown(
[
'%s - %s' % (
m['metadata'].get('source', 'Unknown'),
m['metadata'].get('name')
)
for m in loaded_models
],
label='Model',
type='index'
)
# Model info
with gr.Box():
model_info = gr.Markdown(
'### Model info\n'
'Please select a model from dropdown above.',
elem_id='model_info'
)
output_audio = gr.Audio(label='Output audio')
output_msg = gr.Textbox(label='Output message')
multi_examples = multi_cfg.get('examples')
if (
multi_examples and
multi_examples.get('vc') and multi_examples.get('tts_vc')
):
with gr.Accordion('Sweet sweet examples', open=False):
with gr.Row():
# VC Example
if multi_examples.get('vc'):
gr.Examples(
label='Audio conversion examples',
examples=multi_examples.get('vc'),
inputs=[
input_audio, model_index, pitch_adjust, f0_method,
feat_ratio
],
outputs=[output_audio, output_msg, model_info],
fn=_example_vc,
cache_examples=args.cache_examples,
run_on_click=args.cache_examples
)
# Edge TTS Example
if multi_examples.get('tts_vc'):
gr.Examples(
label='TTS conversion examples',
examples=multi_examples.get('tts_vc'),
inputs=[
tts_input, model_index, tts_speaker, pitch_adjust,
f0_method, feat_ratio
],
outputs=[output_audio, output_msg, model_info],
fn=_example_edge_tts,
cache_examples=args.cache_examples,
run_on_click=args.cache_examples
)
vc_convert_btn.click(
vc_func,
[
input_audio, model_index, pitch_adjust, f0_method, feat_ratio,
filter_radius, rms_mix_rate, resample_rate
],
[output_audio, output_msg],
api_name='audio_conversion'
)
tts_convert_btn.click(
edge_tts_vc_func,
[
tts_input, model_index, tts_speaker, pitch_adjust, f0_method,
feat_ratio, filter_radius, rms_mix_rate, resample_rate
],
[output_audio, output_msg],
api_name='tts_conversion'
)
model_index.change(
update_model_info,
inputs=[model_index],
outputs=[model_info],
show_progress=False,
queue=False
)
app.queue(
concurrency_count=1,
max_size=20,
api_open=args.api
).launch(
server_name=args.bind,
server_port=args.port,
share=args.share
)