|
import torch |
|
from torch.utils.data import Dataset,DataLoader |
|
import torch.nn as nn |
|
import nltk |
|
from nltk.stem.porter import PorterStemmer |
|
import json |
|
import numpy as np |
|
import random |
|
import streamlit as st |
|
|
|
nltk.download('punkt') |
|
|
|
def ExecuteQuery(query): |
|
|
|
class NeuralNet(nn.Module): |
|
|
|
def __init__(self,input_size,hidden_size,num_classes): |
|
super(NeuralNet,self).__init__() |
|
self.l1 = nn.Linear(input_size,hidden_size) |
|
self.l2 = nn.Linear(hidden_size,hidden_size) |
|
self.l3 = nn.Linear(hidden_size,num_classes) |
|
self.relu = nn.ReLU() |
|
|
|
def forward(self,x): |
|
out = self.l1(x) |
|
out = self.relu(out) |
|
out = self.l2(out) |
|
out = self.relu(out) |
|
out = self.l3(out) |
|
return out |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
with open('files/intents.json', 'r') as json_data: |
|
intents = json.load(json_data) |
|
|
|
FILE = "files/intents.pth" |
|
data = torch.load(FILE) |
|
|
|
|
|
|
|
|
|
input_size = data["input_size"] |
|
hidden_size = data["hidden_size"] |
|
output_size = data["output_size"] |
|
all_words = data["all_words"] |
|
tags = data["tags"] |
|
model_state = data["model_state"] |
|
|
|
model = NeuralNet(input_size,hidden_size,output_size).to(device) |
|
model.load_state_dict(model_state) |
|
model.eval() |
|
|
|
Stemmer = PorterStemmer() |
|
|
|
def tokenize(sentence): |
|
return nltk.word_tokenize(sentence) |
|
|
|
def stem(word): |
|
return Stemmer.stem(word.lower()) |
|
|
|
def bag_of_words(tokenized_sentence,words): |
|
sentence_word = [stem(word) for word in tokenized_sentence] |
|
bag = np.zeros(len(words),dtype=np.float32) |
|
|
|
for idx , w in enumerate(words): |
|
if w in sentence_word: |
|
bag[idx] = 1 |
|
|
|
return bag |
|
|
|
sentence = str(query) |
|
|
|
sentence = tokenize(sentence) |
|
X = bag_of_words(sentence,all_words) |
|
X = X.reshape(1,X.shape[0]) |
|
X = torch.from_numpy(X).to(device) |
|
|
|
output = model(X) |
|
|
|
_ , predicted = torch.max(output,dim=1) |
|
|
|
tag = tags[predicted.item()] |
|
|
|
probs = torch.softmax(output,dim=1) |
|
prob = probs[0][predicted.item()] |
|
|
|
if prob.item() >= 0.96: |
|
|
|
for intent in intents['intents']: |
|
|
|
if tag == intent["tag"]: |
|
|
|
reply = random.choice(intent["responses"]) |
|
|
|
return reply, tag, prob.item() |
|
|
|
if prob.item() <= 0.95: |
|
reply = "opencosmo" |
|
tag = "opencosmo" |
|
return reply, tag, prob.item() |
|
|
|
|
|
|
|
|
|
if query := st.text_input("Enter your query: "): |
|
reply = ExecuteQuery(query) |
|
st.write(reply[0]) |
|
print(f"Tag: {reply[1]}") |
|
print(f"Prob: {reply[2]}") |
|
|
|
|
|
|