FurStyleT2I / app.py
Akimitsujiro's picture
Update app.py
89f0271 verified
raw
history blame
11.8 kB
import os
import gc
import gradio as gr
import numpy as np
import torch
import json
import spaces
import config
import utils
import logging
from PIL import Image, PngImagePlugin
from datetime import datetime
from diffusers.models import AutoencoderKL
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
DESCRIPTION = "FurryStyleXL"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU. </p>"
IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1"
HF_TOKEN = os.getenv("HF_TOKEN")
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
MIN_IMAGE_SIZE = int(os.getenv("MIN_IMAGE_SIZE", "512"))
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
OUTPUT_DIR = os.getenv("OUTPUT_DIR", "./outputs")
MODEL = os.getenv(
"MODEL",
"https://huggingface.co/SeaArtLab/SeaArt-Furry-XL-1.0/blob/main/furry-xl-4.0.safetensors",
)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def load_pipeline(model_name):
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix",
torch_dtype=torch.float16,
)
pipeline = (
StableDiffusionXLPipeline.from_single_file
if MODEL.endswith(".safetensors")
else StableDiffusionXLPipeline.from_pretrained
)
pipe = pipeline(
model_name,
vae=vae,
torch_dtype=torch.float16,
custom_pipeline="lpw_stable_diffusion_xl",
use_safetensors=True,
add_watermarker=False,
use_auth_token=HF_TOKEN,
variant="fp16",
)
pipe.to(device)
return pipe
@spaces.GPU
def generate(
prompt: str,
negative_prompt: str = "",
seed: int = 0,
custom_width: int = 1024,
custom_height: int = 1024,
guidance_scale: float = 7.0,
num_inference_steps: int = 28,
sampler: str = "Euler a",
aspect_ratio_selector: str = "896 x 1152",
style_selector: str = "(None)",
quality_selector: str = "Standard",
use_upscaler: bool = False,
upscaler_strength: float = 0.55,
upscale_by: float = 1.5,
add_quality_tags: bool = True,
progress=gr.Progress(track_tqdm=True),
):
generator = utils.seed_everything(seed)
width, height = utils.aspect_ratio_handler(
aspect_ratio_selector,
custom_width,
custom_height,
)
prompt = utils.add_wildcard(prompt, wildcard_files)
prompt, negative_prompt = utils.preprocess_prompt(
quality_prompt, quality_selector, prompt, negative_prompt, add_quality_tags
)
prompt, negative_prompt = utils.preprocess_prompt(
styles, style_selector, prompt, negative_prompt
)
width, height = utils.preprocess_image_dimensions(width, height)
backup_scheduler = pipe.scheduler
pipe.scheduler = utils.get_scheduler(pipe.scheduler.config, sampler)
if use_upscaler:
upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components)
metadata = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"resolution": f"{width} x {height}",
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"seed": seed,
"sampler": sampler,
"sdxl_style": style_selector,
"add_quality_tags": add_quality_tags,
"quality_tags": quality_selector,
}
if use_upscaler:
new_width = int(width * upscale_by)
new_height = int(height * upscale_by)
metadata["use_upscaler"] = {
"upscale_method": "nearest-exact",
"upscaler_strength": upscaler_strength,
"upscale_by": upscale_by,
"new_resolution": f"{new_width} x {new_height}",
}
else:
metadata["use_upscaler"] = None
metadata["model"] = "SeaArt Furry XL 1.0"
logger.info(json.dumps(metadata, indent=4))
try:
if use_upscaler:
latents = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
output_type="latent",
).images
upscaled_latents = utils.upscale(latents, "nearest-exact", upscale_by)
images = upscaler_pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=upscaled_latents,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
strength=upscaler_strength,
generator=generator,
output_type="pil",
).images
else:
images = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
output_type="pil",
).images
if images:
image_paths = [
utils.save_image(image, metadata, OUTPUT_DIR, IS_COLAB) for image in images
]
for image_path in image_paths:
logger.info(f"Image saved as {image_path} with metadata")
return image_paths, metadata
except Exception as e:
logger.exception(f"An error occurred: {e}")
raise
finally:
if use_upscaler:
del upscaler_pipe
pipe.scheduler = backup_scheduler
utils.free_memory()
if torch.cuda.is_available():
pipe = load_pipeline(MODEL)
logger.info("Loaded on Device!")
else:
pipe = None
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in config.style_list}
quality_prompt = {
k["name"]: (k["prompt"], k["negative_prompt"]) for k in config.quality_prompt_list
}
wildcard_files = utils.load_wildcard_files("wildcard")
with gr.Blocks(css="style.css") as demo:
title = gr.HTML(
f"""<h1><span>{DESCRIPTION}</span></h1>""",
elem_id="title",
)
gr.Markdown(
f"""[potofu.me](https://potofu.me/akimitsujiro)""",
elem_id="subtitle",
)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=5,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Generate", variant="primary", scale=0)
result = gr.Gallery(
label="Result",
columns=1,
height="512px",
preview=True,
show_label=False
)
with gr.Accordion(label="Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative Prompt",
max_lines=5,
placeholder="Enter a negative prompt",
)
with gr.Row():
add_quality_tags = gr.Checkbox(label="Add Quality Tags", value=True)
quality_selector = gr.Dropdown(
label="Quality Tags Presets",
interactive=True,
choices=list(quality_prompt.keys()),
value="Standard",
)
style_selector = gr.Radio(
label="Style Preset",
container=True,
interactive=True,
choices=list(styles.keys()),
value="(None)",
)
aspect_ratio_selector = gr.Radio(
label="Aspect Ratio",
choices=config.aspect_ratios,
value="896 x 1152",
container=True,
)
with gr.Group(visible=False) as custom_resolution:
with gr.Row():
custom_width = gr.Slider(
label="Width",
minimum=MIN_IMAGE_SIZE,
maximum=MAX_IMAGE_SIZE,
step=8,
value=1024,
)
custom_height = gr.Slider(
label="Height",
minimum=MIN_IMAGE_SIZE,
maximum=MAX_IMAGE_SIZE,
step=8,
value=1024,
)
use_upscaler = gr.Checkbox(label="Use Upscaler", value=False)
with gr.Row() as upscaler_row:
upscaler_strength = gr.Slider(
label="Strength",
minimum=0,
maximum=1,
step=0.05,
value=0.55,
visible=False,
)
upscale_by = gr.Slider(
label="Upscale by",
minimum=1,
maximum=1.5,
step=0.1,
value=1.5,
visible=False,
)
sampler = gr.Dropdown(
label="Sampler",
choices=config.sampler_list,
interactive=True,
value="Euler a",
)
with gr.Row():
seed = gr.Slider(
label="Seed", minimum=0, maximum=utils.MAX_SEED, step=1, value=0
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Group():
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=1,
maximum=12,
step=0.1,
value=7.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
with gr.Accordion(label="Generation Parameters", open=False):
gr_metadata = gr.JSON(label="Metadata", show_label=False)
gr.Examples(
examples=config.examples,
inputs=prompt,
outputs=[result, gr_metadata],
fn=lambda *args, **kwargs: generate(*args, use_upscaler=True, **kwargs),
cache_examples=CACHE_EXAMPLES,
)
use_upscaler.change(
fn=lambda x: [gr.update(visible=x), gr.update(visible=x)],
inputs=use_upscaler,
outputs=[upscaler_strength, upscale_by],
queue=False,
api_name=False,
)
aspect_ratio_selector.change(
fn=lambda x: gr.update(visible=x == "Custom"),
inputs=aspect_ratio_selector,
outputs=custom_resolution,
queue=False,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=utils.randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=[
prompt,
negative_prompt,
seed,
custom_width,
custom_height,
guidance_scale,
num_inference_steps,
sampler,
aspect_ratio_selector,
style_selector,
quality_selector,
use_upscaler,
upscaler_strength,
upscale_by,
add_quality_tags,
],
outputs=[result, gr_metadata],
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB)