File size: 10,820 Bytes
0b836de
 
411a38c
60f6770
 
321d53a
0b836de
60f6770
 
0b836de
60f6770
 
 
0b836de
 
60f6770
0b836de
 
 
 
 
 
 
 
 
60f6770
9b6e90b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b836de
60f6770
 
 
 
 
 
0b836de
 
60f6770
0b836de
60f6770
 
0b836de
60f6770
0b836de
 
60f6770
cc34367
60f6770
 
f8fd4f0
 
 
 
60f6770
 
 
058ad28
 
60f6770
 
0b836de
9b6e90b
0b836de
 
 
 
 
 
 
 
 
 
 
 
60f6770
d6043de
 
60f6770
 
 
 
 
 
 
 
 
 
 
0b836de
b7806e4
0b836de
 
 
 
 
 
 
 
 
60f6770
0b836de
b7806e4
60f6770
 
 
 
 
 
 
 
 
 
058ad28
 
60f6770
 
 
 
 
 
 
 
 
 
0b836de
f8fd4f0
cc34367
 
60f6770
 
9b6e90b
 
 
 
 
 
 
 
 
0b836de
9b6e90b
0b836de
9b6e90b
 
 
 
 
0b836de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60f6770
 
cc34367
 
60f6770
cc34367
 
60f6770
cc34367
058ad28
1bbffff
60f6770
 
 
 
 
 
ee52443
60f6770
 
 
 
 
 
 
 
 
 
0b836de
 
 
 
 
 
 
60f6770
 
 
 
 
 
 
0b836de
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301


import gradio as gr
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler, LCMScheduler, AutoencoderKL,DiffusionPipeline
import torch
from typing import Tuple
import numpy as np
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
import spaces
import os
import random
import uuid

def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

MAX_SEED = np.iinfo(np.int32).max
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
# by PixArt-alpha/PixArt-Sigma    
style_list = [
    {
        "name": "(No style)",
        "prompt": "{prompt}",
        "negative_prompt": "",
    },
    {
        "name": "Cinematic",
        "prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
        "negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
    },
    {
        "name": "Photographic",
        "prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
        "negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
    },
    {
        "name": "Anime",
        "prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime,  highly detailed",
        "negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
    },
    {
        "name": "Manga",
        "prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style",
        "negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
    },
    {
        "name": "Digital Art",
        "prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
        "negative_prompt": "photo, photorealistic, realism, ugly",
    },
    {
        "name": "Pixel art",
        "prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
        "negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
    },
    {
        "name": "Fantasy art",
        "prompt": "ethereal fantasy concept art of  {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
        "negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
    },
    {
        "name": "Neonpunk",
        "prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
        "negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
    },
    {
        "name": "3D Model",
        "prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
        "negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
    },
]   
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "(No style)"

def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
    p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    if not negative:
        negative = ""
    return p.replace("{prompt}", positive), n + negative

JX_pipe = StableDiffusionXLPipeline.from_pretrained(
        "RunDiffusion/Juggernaut-X-Hyper",
        vae=vae,
        torch_dtype=torch.float16,
    )
JX_pipe.to("cuda")


J10_pipe = StableDiffusionXLPipeline.from_pretrained(
        "RunDiffusion/Juggernaut-X-v10",
        vae=vae,
        torch_dtype=torch.float16,
    )
J10_pipe.to("cuda")


J9_pipe = StableDiffusionXLPipeline.from_pretrained(
        "RunDiffusion/Juggernaut-XL-v9",
        vae=vae,
        torch_dtype=torch.float16,
        custom_pipeline="lpw_stable_diffusion_xl",
        use_safetensors=True,
        add_watermarker=False,
        variant="fp16",
    )
J9_pipe.to("cuda")



@spaces.GPU
def run_comparison(prompt: str,
    negative_prompt: str = "",
    style: str = DEFAULT_STYLE_NAME,
    use_negative_prompt: bool = False,
    num_inference_steps: int = 30,
    num_images_per_prompt: int = 2,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 3,
    randomize_seed: bool = False,
    progress=gr.Progress(track_tqdm=True),
):
    seed = int(randomize_seed_fn(seed, randomize_seed))
    if not use_negative_prompt:
        negative_prompt = ""
    prompt, negative_prompt = apply_style(style, prompt, negative_prompt)
    
    image_r3 = JX_pipe(prompt=prompt,
        negative_prompt=negative_prompt,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        num_images_per_prompt=num_images_per_prompt,
        cross_attention_kwargs={"scale": 0.65},
        output_type="pil",
    ).images
    image_paths_r3 = [save_image(img) for img in image_r3]

    image_r4 = J10_pipe(prompt=prompt,
        negative_prompt=negative_prompt,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        num_images_per_prompt=num_images_per_prompt,
        cross_attention_kwargs={"scale": 0.65},
        output_type="pil",
    ).images
    image_paths_r4 = [save_image(img) for img in image_r4]

    image_r5 = J9_pipe(prompt=prompt,
        negative_prompt=negative_prompt,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        num_images_per_prompt=num_images_per_prompt,
        cross_attention_kwargs={"scale": 0.65},
        output_type="pil",
    ).images
    image_paths_r5 = [save_image(img) for img in image_r5]

    
    return image_paths_r3, image_paths_r4,image_paths_r5, seed

examples = ["A dignified beaver wearing glasses, a vest, and colorful neck tie.",
"The spirit of a tamagotchi wandering in the city of Barcelona",
"an ornate, high-backed mahogany chair with a red cushion",
"a sketch of a camel next to a stream",
"a delicate porcelain teacup sits on a saucer, its surface adorned with intricate blue patterns",
"a baby swan grafitti",
"A bald eagle made of chocolate powder, mango, and whipped cream"
]

with gr.Blocks(theme=gr.themes.Base()) as demo:
    gr.Markdown("## One step Juggernaut-XL comparison 🦶")
    gr.Markdown('Compare Juggernaut-XL variants and distillations able to generate images in a single diffusion step')
    prompt = gr.Textbox(label="Prompt")
    run = gr.Button("Run")
    with gr.Row(visible=True):
            style_selection = gr.Radio(
                show_label=True,
                container=True,
                interactive=True,
                choices=STYLE_NAMES,
                value=DEFAULT_STYLE_NAME,
                label="Image Style",
            )
    with gr.Accordion("Advanced options", open=False):
        use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False, visible=True)
        negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=True,
            )
        with gr.Row():
            num_inference_steps = gr.Slider(
                label="Steps",
                minimum=10,
                maximum=60,
                step=1,
                value=30,
            )
        with gr.Row():
            num_images_per_prompt = gr.Slider(
                label="Images",
                minimum=1,
                maximum=5,
                step=1,
                value=2,
            )
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
            visible=True
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Row(visible=True):
            width = gr.Slider(
                label="Width",
                minimum=512,
                maximum=2048,
                step=8,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=512,
                maximum=2048,
                step=8,
                value=1024,
            )
        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance Scale",
                minimum=0.1,
                maximum=20.0,
                step=0.1,
                value=6,
            )

    with gr.Row():
        with gr.Column():
            image_r3 = gr.Gallery(label="Juggernaut-X",columns=1, preview=True,)
            gr.Markdown("## [Juggernaut-X](https://huggingface.co)")
        with gr.Column():
            image_r4 = gr.Gallery(label="Juggernaut-X-10",columns=1, preview=True,)
            gr.Markdown("## [Juggernaut-XL-10](https://huggingface.co)")
        with gr.Column():
            image_r5 = gr.Gallery(label="Juggernaut-XL-9",columns=1, preview=True,)
            gr.Markdown("## [Juggernaut-XL-9](https://huggingface.co)") 
    image_outputs = [image_r3, image_r4, image_r5]
    gr.on(
        triggers=[prompt.submit, run.click],
        fn=run_comparison,
        inputs=[
           prompt,
           negative_prompt,
           style_selection,
           use_negative_prompt,
           num_inference_steps,
           num_images_per_prompt,
           seed,
           width,
           height,
           guidance_scale,
           randomize_seed,
       ],
        outputs=image_outputs
    )
    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        api_name=False,
    )
    gr.Examples(
        examples=examples,
        fn=run_comparison,
        inputs=prompt,
        outputs=image_outputs,
        cache_examples=False,
        run_on_click=True
    )
if __name__ == "__main__":
    demo.queue(max_size=20).launch(show_api=False, debug=False)