import gradio as gr from huggingface_hub import login from transformers import AutoModelForVideoClassification, AutoFeatureExtractor, pipeline import torch # Load the Hugging Face API token from environment variables or enter directly # HUGGINGFACEHUB_API_TOKEN = "your_huggingface_api_token" # login(HUGGINGFACEHUB_API_TOKEN) # Define the model and feature extractor from Hugging Face # model_name = "microsoft/xclip-base-patch32" model_name = "facebook/timesformer-base-finetuned-k400" model = AutoModelForVideoClassification.from_pretrained(model_name) feature_extractor = AutoFeatureExtractor.from_pretrained(model_name) # Create a video classification pipeline device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) video_pipeline = pipeline("video-classification", model=model, feature_extractor=feature_extractor, device=0 if torch.cuda.is_available() else -1) # Define the function for video classification def classify_video(video_path): predictions = video_pipeline(video_path) return {prediction['label']: prediction['score'] for prediction in predictions} # Create a Gradio interface interface = gr.Interface( fn=classify_video, inputs=gr.Video(label="Upload a video for classification"), outputs=gr.Label(num_top_classes=5, label="Top 5 Predicted Classes"), title="Video Classification using Hugging Face", description="Upload a video file and get the top 5 predicted classes using a Hugging Face video classification model." ) # Launch the Gradio interface if __name__ == "__main__": interface.launch()