Spaces:
Running
Running
import gradio as gr | |
from huggingface_hub import login | |
from transformers import AutoModelForVideoClassification, AutoFeatureExtractor, pipeline | |
import torch | |
# Load the Hugging Face API token from environment variables or enter directly | |
# HUGGINGFACEHUB_API_TOKEN = "your_huggingface_api_token" | |
# login(HUGGINGFACEHUB_API_TOKEN) | |
# Define the model and feature extractor from Hugging Face | |
# model_name = "microsoft/xclip-base-patch32" | |
model_name = "facebook/timesformer-base-finetuned-k400" | |
model = AutoModelForVideoClassification.from_pretrained(model_name) | |
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name) | |
# Create a video classification pipeline | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
video_pipeline = pipeline("video-classification", model=model, feature_extractor=feature_extractor, device=0 if torch.cuda.is_available() else -1) | |
# Define the function for video classification | |
def classify_video(video_path): | |
predictions = video_pipeline(video_path) | |
return {prediction['label']: prediction['score'] for prediction in predictions} | |
# Create a Gradio interface | |
interface = gr.Interface( | |
fn=classify_video, | |
inputs=gr.Video(label="Upload a video for classification"), | |
outputs=gr.Label(num_top_classes=5, label="Top 5 Predicted Classes"), | |
title="Video Classification using Hugging Face", | |
description="Upload a video file and get the top 5 predicted classes using a Hugging Face video classification model." | |
) | |
# Launch the Gradio interface | |
if __name__ == "__main__": | |
interface.launch() | |