File size: 12,136 Bytes
102cc89 d19b184 102cc89 de9b441 102cc89 09c590a 102cc89 09c590a 102cc89 2bd32ae de9b441 102cc89 09c590a 102cc89 9aee3a2 09c590a b92ee4f 9aee3a2 102cc89 09c590a 102cc89 9aee3a2 102cc89 628df8b 9ee4991 102cc89 e519161 102cc89 09c590a 654244f 09c590a 654244f 5fc3cab 654244f 102cc89 e12f59b 102cc89 e12f59b 102cc89 09c590a 102cc89 f3924ac 102cc89 07a94cf 102cc89 373d0cc 102cc89 09c590a 102cc89 ac2835f 102cc89 9ee4991 102cc89 09c590a 102cc89 d4bf7d4 102cc89 09c590a 102cc89 691b011 e519161 102cc89 9ee4991 102cc89 de9b441 102cc89 de9b441 102cc89 9ee4991 102cc89 7c54b15 102cc89 9ab6cfe 102cc89 c6727a8 102cc89 8f14423 102cc89 de9b441 102cc89 ac2835f 102cc89 ef238ef 102cc89 09c590a 102cc89 09c590a 102cc89 e519161 102cc89 bc1a4e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import logging
import time
from pathlib import Path
import gradio as gr
import nltk
from cleantext import clean
from summarize import load_model_and_tokenizer, summarize_via_tokenbatches
from utils import load_example_filenames, truncate_word_count
_here = Path(__file__).parent
nltk.download("stopwords")
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
def proc_submission(
input_text: str,
model_size: str,
num_beams,
token_batch_length,
length_penalty,
max_input_length: int = 3060,
):
"""
proc_submission - a helper function for the gradio module to process submissions
Args:
input_text (str): the input text to summarize
model_size (str): the size of the model to use
num_beams (int): the number of beams to use
token_batch_length (int): the length of the token batches to use
length_penalty (float): the length penalty to use
repetition_penalty (float): the repetition penalty to use
no_repeat_ngram_size (int): the no repeat ngram size to use
max_input_length (int, optional): the maximum input length to use. Defaults to 768.
Returns:
str in HTML format, string of the summary, str of score
"""
settings_det = {
"length_penalty": float(length_penalty),
"repetition_penalty": 3.5,
"no_repeat_ngram_size": 3,
"encoder_no_repeat_ngram_size": 4,
"num_beams": int(num_beams),
"min_length": 100,
"max_length": 512,#int(token_batch_length // 4),
"early_stopping": True,
"do_sample": False,
}
settings_tldr = {
"length_penalty": float(length_penalty),
"repetition_penalty": 3.5,
"no_repeat_ngram_size": 3,
"encoder_no_repeat_ngram_size": 4,
"num_beams": int(num_beams),
"min_length": 11,
"max_length": 62,
"early_stopping": True,
"do_sample": False,
}
if model_size == "tldr":
settings = settings_tldr
else:
settings = settings_det
st = time.perf_counter()
history = {}
clean_text = clean(input_text, extra_spaces=True, lowercase=True, reg="\b(?!(?:Although|Also)\b)(?:[A-Z][A-Za-z'`-]+)(?:,? (?:(?:and |& )?(?:[A-Z][A-Za-z'`-]+)|(?:et al.?)))*(?:, *(?:19|20)[0-9][0-9](?:, p\.? [0-9]+)?| *\((?:19|20)[0-9][0-9](?:, p\.? [0-9]+)?\))", reg_replace="")
#max_input_length = 2048 if model_size == "tldr" else max_input_length
processed = truncate_word_count(clean_text, max_input_length)
if processed["was_truncated"]:
tr_in = processed["truncated_text"]
msg = f"Input text was truncated to {max_input_length} words to fit within the computational constraints of the inference API"
logging.warning(msg)
history["WARNING"] = msg
else:
tr_in = input_text
msg = None
_summaries = summarize_via_tokenbatches(
tr_in,
model_sm if model_size == "tldr" else model,
tokenizer_sm if model_size == "tldr" else tokenizer,
batch_length=token_batch_length,
**settings,
)
sum_text = [f"Section {i}: " + s["summary"][0] for i, s in enumerate(_summaries)]
rates = [
f" - Section {i}: {round(s['compression_rate'],3)}"
for i, s in enumerate(_summaries)
]
sum_text_out = "\n".join(sum_text)
history["Compression Rates"] = "<br><br>"
rates_out = "\n".join(rates)
rt = round((time.perf_counter() - st) / 60, 2)
print(f"Runtime: {rt} minutes")
html = ""
html += f"<p>Runtime: {rt} minutes on CPU</p>"
if msg is not None:
html += f"<h2>WARNING:</h2><hr><b>{msg}</b><br><br>"
html += ""
return html, sum_text_out, rates_out
def load_single_example_text(
example_path: str or Path,
):
"""
load_single_example - a helper function for the gradio module to load examples
Returns:
list of str, the examples
"""
global name_to_path
full_ex_path = name_to_path[example_path]
full_ex_path = Path(full_ex_path)
# load the examples into a list
with open(full_ex_path, "r", encoding="utf-8", errors="ignore") as f:
raw_text = f.read()
text = clean(raw_text, extra_spaces=True, lowercase=False) #see if it works
return text
def load_uploaded_file(file_obj):
"""
load_uploaded_file - process an uploaded file
Args:
file_obj (POTENTIALLY list): Gradio file object inside a list
Returns:
str, the uploaded file contents
"""
# file_path = Path(file_obj[0].name)
# check if mysterious file object is a list
if isinstance(file_obj, list):
file_obj = file_obj[0]
file_path = Path(file_obj.name)
try:
with open(file_path, "r", encoding="utf-8", errors="ignore") as f:
raw_text = f.read()
text = clean(raw_text, extra_spaces=True, lowercase=True, reg="\s(?=[\,.':;!?])",reg_replace="")
return text
except Exception as e:
logging.info(f"Trying to load file with path {file_path}, error: {e}")
return "Error: Could not read file. Ensure that it is a valid text file with encoding UTF-8."
if __name__ == "__main__":
model, tokenizer = load_model_and_tokenizer("Blaise-g/longt5_tglobal_large_sumpubmed")
model_sm, tokenizer_sm = load_model_and_tokenizer("Blaise-g/longt5_tglobal_large_scitldr")
name_to_path = load_example_filenames(_here / "examples")
logging.info(f"Loaded {len(name_to_path)} examples")
demo = gr.Blocks()
with demo:
gr.Markdown("# Automatic summarization of biomedical research papers with neural abstractive methods into a long and comprehensive synopsis or extreme TLDR summary version")
gr.Markdown(
"A demo developed for my Master Thesis project using ad-hoc fine-tuned abstractive summarization models to summarize long biomedical articles into a detailed, explanatory synopsis or extreme TLDR summary."
)
with gr.Column():
gr.Markdown("### Select Summary type and text generation parameters then load input text")
gr.Markdown(
"Enter text below in the text area or alternatively load an example below or upload a file."
)
with gr.Row():
model_size = gr.Radio(
choices=["tldr", "detailed"], label="Summary type", value="detailed"
)
num_beams = gr.Radio(
choices=[2, 3, 4],
label="Beam Search: Number of Beams",
value=2,
)
gr.Markdown(
"_For optimal results use a GPU as the hosted CPU inference is lacking at times and hinders the output summary quality as well as forcing to divide the input text into batches._"
)
with gr.Row():
length_penalty = gr.inputs.Slider(
minimum=0.5,
maximum=1.0,
label="length penalty",
default=0.7,
step=0.05,
)
token_batch_length = gr.Radio(
choices=[1024, 2048, 3060],
label="token batch length",
value=2048,
)
with gr.Row():
example_name = gr.Dropdown(
list(name_to_path.keys()),
label="Choose an Example",
)
load_examples_button = gr.Button(
"Load Example",
)
input_text = gr.Textbox(
lines=6,
label="Input Text (for summarization)",
placeholder="Enter any scientific text to be condensed into a detailed, explanatory synopsis or TLDR summary version. The input text is divided into batches of the selected token lengths to fit within the memory constraints, pre-processed and fed into the model of choice. The models were trained to handle long scientific papers but generalize reasonably well also to shorter text documents like scientific abstracts. Might take a while to produce long summaries :)",
)
gr.Markdown("Upload your own file:")
with gr.Row():
uploaded_file = gr.File(
label="Upload a text file",
file_count="single",
type="file",
)
load_file_button = gr.Button("Load Uploaded File")
gr.Markdown("---")
with gr.Column():
gr.Markdown("## Generate Summary")
gr.Markdown(
"Summary generation should take approximately 2-3 minutes for most generation settings but can take significantly more time for very long documents with a high beam number."
)
summarize_button = gr.Button(
"Summarize!",
variant="primary",
)
output_text = gr.HTML("<p><em>Output will appear below:</em></p>")
gr.Markdown("### Summary Output")
summary_text = gr.Textbox(
label="Summary π", placeholder="The generated π will appear here"
)
gr.Markdown(
"The compression rate π indicates the ratio between the machine-generated summary length and the input text (from 0% to 100%). The higher the π the more extreme the summary is."
)
compression_rate = gr.Textbox(
label="Compression rate π", placeholder="The π will appear here"
)
gr.Markdown("---")
with gr.Column():
gr.Markdown("## About the Models")
gr.Markdown(
"- [Blaise-g/longt5_tglobal_large_sumpubmed](https://huggingface.co/Blaise-g/longt5_tglobal_large_sumpubmed) is a fine-tuned checkpoint of [Stancld/longt5-tglobal-large-16384-pubmed-3k_steps](https://huggingface.co/Stancld/longt5-tglobal-large-16384-pubmed-3k_steps) on the [SumPubMed dataset](https://aclanthology.org/2021.acl-srw.30/). [Blaise-g/longt5_tglobal_large_scitldr](https://huggingface.co/Blaise-g/longt5_tglobal_large_scitldr) is a fine-tuned checkpoint of [Blaise-g/longt5_tglobal_large_sumpubmed](https://huggingface.co/Blaise-g/longt5_tglobal_large_sumpubmed) on the [Scitldr dataset](https://arxiv.org/abs/2004.15011). The goal was to create two models capable of handling the complex information contained in long biomedical documents and subsequently producing scientific summaries according to one of the two possible levels of conciseness: 1) A long explanatory synopsis that retains the majority of domain-specific language used in the original source text. 2)A one sentence long, TLDR style summary."
)
gr.Markdown(
"- The two most important text generation parameters are the number of beams and length penalty : 1) Choosing a higher number of beams for the beam search algorithm results in generating a summary with higher probability (hence theoretically higher quality) at the cost of increasing computation times and memory usage. 2) The length penalty encourages the model to generate longer (with values closer to 1.0) or shorter (with values closer to 0.0) summary sequences by placing an exponential penalty on the beam score according to the current sequence length."
)
gr.Markdown("---")
load_examples_button.click(
fn=load_single_example_text, inputs=[example_name], outputs=[input_text]
)
load_file_button.click(
fn=load_uploaded_file, inputs=uploaded_file, outputs=[input_text]
)
summarize_button.click(
fn=proc_submission,
inputs=[
input_text,
model_size,
num_beams,
token_batch_length,
length_penalty,
],
outputs=[output_text, summary_text, compression_rate],
)
demo.launch(enable_queue=True, share=False) |