Spaces:
Running
Running
BharatYadav00
commited on
Commit
•
3fa2552
1
Parent(s):
749b4e8
Upload 20 files
Browse files- .DS_Store +0 -0
- .gitattributes +35 -35
- .gitmodules +3 -0
- .pre-commit-config.yaml +14 -0
- Dockerfile +24 -0
- LICENSE +21 -0
- README.md +13 -12
- api.py +132 -0
- app.py +730 -0
- finetune-cli.py +127 -0
- finetune_gradio.py +944 -0
- gradio_app.py +824 -0
- inference-cli.py +170 -0
- inference-cli.toml +10 -0
- pyproject.toml +61 -0
- requirements.txt +25 -0
- requirements_eval.txt +5 -0
- ruff.toml +10 -0
- speech_edit.py +189 -0
- train.py +92 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
.gitattributes
CHANGED
@@ -1,35 +1,35 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
.gitmodules
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[submodule "src/third_party/BigVGAN"]
|
2 |
+
path = src/third_party/BigVGAN
|
3 |
+
url = https://github.com/NVIDIA/BigVGAN.git
|
.pre-commit-config.yaml
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
repos:
|
2 |
+
- repo: https://github.com/astral-sh/ruff-pre-commit
|
3 |
+
# Ruff version.
|
4 |
+
rev: v0.7.0
|
5 |
+
hooks:
|
6 |
+
# Run the linter.
|
7 |
+
- id: ruff
|
8 |
+
args: [--fix]
|
9 |
+
# Run the formatter.
|
10 |
+
- id: ruff-format
|
11 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
12 |
+
rev: v2.3.0
|
13 |
+
hooks:
|
14 |
+
- id: check-yaml
|
Dockerfile
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM pytorch/pytorch:2.4.0-cuda12.4-cudnn9-devel
|
2 |
+
|
3 |
+
USER root
|
4 |
+
|
5 |
+
ARG DEBIAN_FRONTEND=noninteractive
|
6 |
+
|
7 |
+
LABEL github_repo="https://github.com/SWivid/F5-TTS"
|
8 |
+
|
9 |
+
RUN set -x \
|
10 |
+
&& apt-get update \
|
11 |
+
&& apt-get -y install wget curl man git less openssl libssl-dev unzip unar build-essential aria2 tmux vim \
|
12 |
+
&& apt-get install -y openssh-server sox libsox-fmt-all libsox-fmt-mp3 libsndfile1-dev ffmpeg \
|
13 |
+
&& rm -rf /var/lib/apt/lists/* \
|
14 |
+
&& apt-get clean
|
15 |
+
|
16 |
+
WORKDIR /workspace
|
17 |
+
|
18 |
+
RUN git clone https://github.com/SWivid/F5-TTS.git \
|
19 |
+
&& cd F5-TTS \
|
20 |
+
&& pip install -e .[eval]
|
21 |
+
|
22 |
+
ENV SHELL=/bin/bash
|
23 |
+
|
24 |
+
WORKDIR /workspace/F5-TTS
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2024 Yushen CHEN
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
-
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
sdk: gradio
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
1 |
+
---
|
2 |
+
title: F5-TTS
|
3 |
+
emoji: 🗣️
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: green
|
6 |
+
sdk: gradio
|
7 |
+
app_file: app.py
|
8 |
+
pinned: true
|
9 |
+
short_description: 'F5-TTS & E2-TTS: Zero-Shot Voice Cloning (Unofficial Demo)'
|
10 |
+
sdk_version: 4.44.1
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
api.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import soundfile as sf
|
2 |
+
import torch
|
3 |
+
import tqdm
|
4 |
+
from cached_path import cached_path
|
5 |
+
|
6 |
+
from model import DiT, UNetT
|
7 |
+
from model.utils import save_spectrogram
|
8 |
+
|
9 |
+
from model.utils_infer import load_vocoder, load_model, infer_process, remove_silence_for_generated_wav
|
10 |
+
from model.utils import seed_everything
|
11 |
+
import random
|
12 |
+
import sys
|
13 |
+
|
14 |
+
|
15 |
+
class F5TTS:
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
model_type="F5-TTS",
|
19 |
+
ckpt_file="",
|
20 |
+
vocab_file="",
|
21 |
+
ode_method="euler",
|
22 |
+
use_ema=True,
|
23 |
+
local_path=None,
|
24 |
+
device=None,
|
25 |
+
):
|
26 |
+
# Initialize parameters
|
27 |
+
self.final_wave = None
|
28 |
+
self.target_sample_rate = 24000
|
29 |
+
self.n_mel_channels = 100
|
30 |
+
self.hop_length = 256
|
31 |
+
self.target_rms = 0.1
|
32 |
+
self.seed = -1
|
33 |
+
|
34 |
+
# Set device
|
35 |
+
self.device = device or (
|
36 |
+
"cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
37 |
+
)
|
38 |
+
|
39 |
+
# Load models
|
40 |
+
self.load_vocoder_model(local_path)
|
41 |
+
self.load_ema_model(model_type, ckpt_file, vocab_file, ode_method, use_ema)
|
42 |
+
|
43 |
+
def load_vocoder_model(self, local_path):
|
44 |
+
self.vocos = load_vocoder(local_path is not None, local_path, self.device)
|
45 |
+
|
46 |
+
def load_ema_model(self, model_type, ckpt_file, vocab_file, ode_method, use_ema):
|
47 |
+
if model_type == "F5-TTS":
|
48 |
+
if not ckpt_file:
|
49 |
+
ckpt_file = str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors"))
|
50 |
+
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
51 |
+
model_cls = DiT
|
52 |
+
elif model_type == "E2-TTS":
|
53 |
+
if not ckpt_file:
|
54 |
+
ckpt_file = str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.safetensors"))
|
55 |
+
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
56 |
+
model_cls = UNetT
|
57 |
+
else:
|
58 |
+
raise ValueError(f"Unknown model type: {model_type}")
|
59 |
+
|
60 |
+
self.ema_model = load_model(model_cls, model_cfg, ckpt_file, vocab_file, ode_method, use_ema, self.device)
|
61 |
+
|
62 |
+
def export_wav(self, wav, file_wave, remove_silence=False):
|
63 |
+
sf.write(file_wave, wav, self.target_sample_rate)
|
64 |
+
|
65 |
+
if remove_silence:
|
66 |
+
remove_silence_for_generated_wav(file_wave)
|
67 |
+
|
68 |
+
def export_spectrogram(self, spect, file_spect):
|
69 |
+
save_spectrogram(spect, file_spect)
|
70 |
+
|
71 |
+
def infer(
|
72 |
+
self,
|
73 |
+
ref_file,
|
74 |
+
ref_text,
|
75 |
+
gen_text,
|
76 |
+
show_info=print,
|
77 |
+
progress=tqdm,
|
78 |
+
target_rms=0.1,
|
79 |
+
cross_fade_duration=0.15,
|
80 |
+
sway_sampling_coef=-1,
|
81 |
+
cfg_strength=2,
|
82 |
+
nfe_step=32,
|
83 |
+
speed=1.0,
|
84 |
+
fix_duration=None,
|
85 |
+
remove_silence=False,
|
86 |
+
file_wave=None,
|
87 |
+
file_spect=None,
|
88 |
+
seed=-1,
|
89 |
+
):
|
90 |
+
if seed == -1:
|
91 |
+
seed = random.randint(0, sys.maxsize)
|
92 |
+
seed_everything(seed)
|
93 |
+
self.seed = seed
|
94 |
+
wav, sr, spect = infer_process(
|
95 |
+
ref_file,
|
96 |
+
ref_text,
|
97 |
+
gen_text,
|
98 |
+
self.ema_model,
|
99 |
+
show_info=show_info,
|
100 |
+
progress=progress,
|
101 |
+
target_rms=target_rms,
|
102 |
+
cross_fade_duration=cross_fade_duration,
|
103 |
+
nfe_step=nfe_step,
|
104 |
+
cfg_strength=cfg_strength,
|
105 |
+
sway_sampling_coef=sway_sampling_coef,
|
106 |
+
speed=speed,
|
107 |
+
fix_duration=fix_duration,
|
108 |
+
device=self.device,
|
109 |
+
)
|
110 |
+
|
111 |
+
if file_wave is not None:
|
112 |
+
self.export_wav(wav, file_wave, remove_silence)
|
113 |
+
|
114 |
+
if file_spect is not None:
|
115 |
+
self.export_spectrogram(spect, file_spect)
|
116 |
+
|
117 |
+
return wav, sr, spect
|
118 |
+
|
119 |
+
|
120 |
+
if __name__ == "__main__":
|
121 |
+
f5tts = F5TTS()
|
122 |
+
|
123 |
+
wav, sr, spect = f5tts.infer(
|
124 |
+
ref_file="tests/ref_audio/test_en_1_ref_short.wav",
|
125 |
+
ref_text="some call me nature, others call me mother nature.",
|
126 |
+
gen_text="""I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring. Respect me and I'll nurture you; ignore me and you shall face the consequences.""",
|
127 |
+
file_wave="tests/out.wav",
|
128 |
+
file_spect="tests/out.png",
|
129 |
+
seed=-1, # random seed = -1
|
130 |
+
)
|
131 |
+
|
132 |
+
print("seed :", f5tts.seed)
|
app.py
ADDED
@@ -0,0 +1,730 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ruff: noqa: E402
|
2 |
+
# Above allows ruff to ignore E402: module level import not at top of file
|
3 |
+
|
4 |
+
import re
|
5 |
+
import tempfile
|
6 |
+
|
7 |
+
import click
|
8 |
+
import gradio as gr
|
9 |
+
import numpy as np
|
10 |
+
import soundfile as sf
|
11 |
+
import torchaudio
|
12 |
+
from cached_path import cached_path
|
13 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
14 |
+
|
15 |
+
try:
|
16 |
+
import spaces
|
17 |
+
|
18 |
+
USING_SPACES = True
|
19 |
+
except ImportError:
|
20 |
+
USING_SPACES = False
|
21 |
+
|
22 |
+
|
23 |
+
def gpu_decorator(func):
|
24 |
+
if USING_SPACES:
|
25 |
+
return spaces.GPU(func)
|
26 |
+
else:
|
27 |
+
return func
|
28 |
+
|
29 |
+
|
30 |
+
from f5_tts.model import DiT, UNetT
|
31 |
+
from f5_tts.infer.utils_infer import (
|
32 |
+
load_vocoder,
|
33 |
+
load_model,
|
34 |
+
preprocess_ref_audio_text,
|
35 |
+
infer_process,
|
36 |
+
remove_silence_for_generated_wav,
|
37 |
+
save_spectrogram,
|
38 |
+
)
|
39 |
+
|
40 |
+
vocoder = load_vocoder()
|
41 |
+
|
42 |
+
|
43 |
+
# load models
|
44 |
+
F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
45 |
+
F5TTS_ema_model = load_model(
|
46 |
+
DiT, F5TTS_model_cfg, str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors"))
|
47 |
+
)
|
48 |
+
|
49 |
+
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
50 |
+
E2TTS_ema_model = load_model(
|
51 |
+
UNetT, E2TTS_model_cfg, str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.safetensors"))
|
52 |
+
)
|
53 |
+
|
54 |
+
chat_model_state = None
|
55 |
+
chat_tokenizer_state = None
|
56 |
+
|
57 |
+
|
58 |
+
@gpu_decorator
|
59 |
+
def generate_response(messages, model, tokenizer):
|
60 |
+
"""Generate response using Qwen"""
|
61 |
+
text = tokenizer.apply_chat_template(
|
62 |
+
messages,
|
63 |
+
tokenize=False,
|
64 |
+
add_generation_prompt=True,
|
65 |
+
)
|
66 |
+
|
67 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
68 |
+
generated_ids = model.generate(
|
69 |
+
**model_inputs,
|
70 |
+
max_new_tokens=512,
|
71 |
+
temperature=0.7,
|
72 |
+
top_p=0.95,
|
73 |
+
)
|
74 |
+
|
75 |
+
generated_ids = [
|
76 |
+
output_ids[len(input_ids) :] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
77 |
+
]
|
78 |
+
return tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
79 |
+
|
80 |
+
|
81 |
+
@gpu_decorator
|
82 |
+
def infer(
|
83 |
+
ref_audio_orig, ref_text, gen_text, model, remove_silence, cross_fade_duration=0.15, speed=1, show_info=gr.Info
|
84 |
+
):
|
85 |
+
ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, ref_text, show_info=show_info)
|
86 |
+
|
87 |
+
if model == "F5-TTS":
|
88 |
+
ema_model = F5TTS_ema_model
|
89 |
+
elif model == "E2-TTS":
|
90 |
+
ema_model = E2TTS_ema_model
|
91 |
+
|
92 |
+
final_wave, final_sample_rate, combined_spectrogram = infer_process(
|
93 |
+
ref_audio,
|
94 |
+
ref_text,
|
95 |
+
gen_text,
|
96 |
+
ema_model,
|
97 |
+
vocoder,
|
98 |
+
cross_fade_duration=cross_fade_duration,
|
99 |
+
speed=speed,
|
100 |
+
show_info=show_info,
|
101 |
+
progress=gr.Progress(),
|
102 |
+
)
|
103 |
+
|
104 |
+
# Remove silence
|
105 |
+
if remove_silence:
|
106 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
107 |
+
sf.write(f.name, final_wave, final_sample_rate)
|
108 |
+
remove_silence_for_generated_wav(f.name)
|
109 |
+
final_wave, _ = torchaudio.load(f.name)
|
110 |
+
final_wave = final_wave.squeeze().cpu().numpy()
|
111 |
+
|
112 |
+
# Save the spectrogram
|
113 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
|
114 |
+
spectrogram_path = tmp_spectrogram.name
|
115 |
+
save_spectrogram(combined_spectrogram, spectrogram_path)
|
116 |
+
|
117 |
+
return (final_sample_rate, final_wave), spectrogram_path
|
118 |
+
|
119 |
+
|
120 |
+
with gr.Blocks() as app_credits:
|
121 |
+
gr.Markdown("""
|
122 |
+
# Credits
|
123 |
+
|
124 |
+
* [mrfakename](https://github.com/fakerybakery) for the original [online demo](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
|
125 |
+
* [RootingInLoad](https://github.com/RootingInLoad) for initial chunk generation and podcast app exploration
|
126 |
+
* [jpgallegoar](https://github.com/jpgallegoar) for multiple speech-type generation & voice chat
|
127 |
+
""")
|
128 |
+
with gr.Blocks() as app_tts:
|
129 |
+
gr.Markdown("# Batched TTS")
|
130 |
+
ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
|
131 |
+
gen_text_input = gr.Textbox(label="Text to Generate", lines=10)
|
132 |
+
model_choice = gr.Radio(choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS")
|
133 |
+
generate_btn = gr.Button("Synthesize", variant="primary")
|
134 |
+
with gr.Accordion("Advanced Settings", open=False):
|
135 |
+
ref_text_input = gr.Textbox(
|
136 |
+
label="Reference Text",
|
137 |
+
info="Leave blank to automatically transcribe the reference audio. If you enter text it will override automatic transcription.",
|
138 |
+
lines=2,
|
139 |
+
)
|
140 |
+
remove_silence = gr.Checkbox(
|
141 |
+
label="Remove Silences",
|
142 |
+
info="The model tends to produce silences, especially on longer audio. We can manually remove silences if needed. Note that this is an experimental feature and may produce strange results. This will also increase generation time.",
|
143 |
+
value=False,
|
144 |
+
)
|
145 |
+
speed_slider = gr.Slider(
|
146 |
+
label="Speed",
|
147 |
+
minimum=0.3,
|
148 |
+
maximum=2.0,
|
149 |
+
value=1.0,
|
150 |
+
step=0.1,
|
151 |
+
info="Adjust the speed of the audio.",
|
152 |
+
)
|
153 |
+
cross_fade_duration_slider = gr.Slider(
|
154 |
+
label="Cross-Fade Duration (s)",
|
155 |
+
minimum=0.0,
|
156 |
+
maximum=1.0,
|
157 |
+
value=0.15,
|
158 |
+
step=0.01,
|
159 |
+
info="Set the duration of the cross-fade between audio clips.",
|
160 |
+
)
|
161 |
+
|
162 |
+
audio_output = gr.Audio(label="Synthesized Audio")
|
163 |
+
spectrogram_output = gr.Image(label="Spectrogram")
|
164 |
+
|
165 |
+
generate_btn.click(
|
166 |
+
infer,
|
167 |
+
inputs=[
|
168 |
+
ref_audio_input,
|
169 |
+
ref_text_input,
|
170 |
+
gen_text_input,
|
171 |
+
model_choice,
|
172 |
+
remove_silence,
|
173 |
+
cross_fade_duration_slider,
|
174 |
+
speed_slider,
|
175 |
+
],
|
176 |
+
outputs=[audio_output, spectrogram_output],
|
177 |
+
)
|
178 |
+
|
179 |
+
|
180 |
+
def parse_speechtypes_text(gen_text):
|
181 |
+
# Pattern to find {speechtype}
|
182 |
+
pattern = r"\{(.*?)\}"
|
183 |
+
|
184 |
+
# Split the text by the pattern
|
185 |
+
tokens = re.split(pattern, gen_text)
|
186 |
+
|
187 |
+
segments = []
|
188 |
+
|
189 |
+
current_style = "Regular"
|
190 |
+
|
191 |
+
for i in range(len(tokens)):
|
192 |
+
if i % 2 == 0:
|
193 |
+
# This is text
|
194 |
+
text = tokens[i].strip()
|
195 |
+
if text:
|
196 |
+
segments.append({"style": current_style, "text": text})
|
197 |
+
else:
|
198 |
+
# This is style
|
199 |
+
style = tokens[i].strip()
|
200 |
+
current_style = style
|
201 |
+
|
202 |
+
return segments
|
203 |
+
|
204 |
+
|
205 |
+
with gr.Blocks() as app_multistyle:
|
206 |
+
# New section for multistyle generation
|
207 |
+
gr.Markdown(
|
208 |
+
"""
|
209 |
+
# Multiple Speech-Type Generation
|
210 |
+
|
211 |
+
This section allows you to generate multiple speech types or multiple people's voices. Enter your text in the format shown below, and the system will generate speech using the appropriate type. If unspecified, the model will use the regular speech type. The current speech type will be used until the next speech type is specified.
|
212 |
+
"""
|
213 |
+
)
|
214 |
+
|
215 |
+
with gr.Row():
|
216 |
+
gr.Markdown(
|
217 |
+
"""
|
218 |
+
**Example Input:**
|
219 |
+
{Regular} Hello, I'd like to order a sandwich please.
|
220 |
+
{Surprised} What do you mean you're out of bread?
|
221 |
+
{Sad} I really wanted a sandwich though...
|
222 |
+
{Angry} You know what, darn you and your little shop!
|
223 |
+
{Whisper} I'll just go back home and cry now.
|
224 |
+
{Shouting} Why me?!
|
225 |
+
"""
|
226 |
+
)
|
227 |
+
|
228 |
+
gr.Markdown(
|
229 |
+
"""
|
230 |
+
**Example Input 2:**
|
231 |
+
{Speaker1_Happy} Hello, I'd like to order a sandwich please.
|
232 |
+
{Speaker2_Regular} Sorry, we're out of bread.
|
233 |
+
{Speaker1_Sad} I really wanted a sandwich though...
|
234 |
+
{Speaker2_Whisper} I'll give you the last one I was hiding.
|
235 |
+
"""
|
236 |
+
)
|
237 |
+
|
238 |
+
gr.Markdown(
|
239 |
+
"Upload different audio clips for each speech type. The first speech type is mandatory. You can add additional speech types by clicking the 'Add Speech Type' button."
|
240 |
+
)
|
241 |
+
|
242 |
+
# Regular speech type (mandatory)
|
243 |
+
with gr.Row():
|
244 |
+
with gr.Column():
|
245 |
+
regular_name = gr.Textbox(value="Regular", label="Speech Type Name")
|
246 |
+
regular_insert = gr.Button("Insert", variant="secondary")
|
247 |
+
regular_audio = gr.Audio(label="Regular Reference Audio", type="filepath")
|
248 |
+
regular_ref_text = gr.Textbox(label="Reference Text (Regular)", lines=2)
|
249 |
+
|
250 |
+
# Additional speech types (up to 99 more)
|
251 |
+
max_speech_types = 100
|
252 |
+
speech_type_rows = []
|
253 |
+
speech_type_names = [regular_name]
|
254 |
+
speech_type_audios = []
|
255 |
+
speech_type_ref_texts = []
|
256 |
+
speech_type_delete_btns = []
|
257 |
+
speech_type_insert_btns = []
|
258 |
+
speech_type_insert_btns.append(regular_insert)
|
259 |
+
|
260 |
+
for i in range(max_speech_types - 1):
|
261 |
+
with gr.Row(visible=False) as row:
|
262 |
+
with gr.Column():
|
263 |
+
name_input = gr.Textbox(label="Speech Type Name")
|
264 |
+
delete_btn = gr.Button("Delete", variant="secondary")
|
265 |
+
insert_btn = gr.Button("Insert", variant="secondary")
|
266 |
+
audio_input = gr.Audio(label="Reference Audio", type="filepath")
|
267 |
+
ref_text_input = gr.Textbox(label="Reference Text", lines=2)
|
268 |
+
speech_type_rows.append(row)
|
269 |
+
speech_type_names.append(name_input)
|
270 |
+
speech_type_audios.append(audio_input)
|
271 |
+
speech_type_ref_texts.append(ref_text_input)
|
272 |
+
speech_type_delete_btns.append(delete_btn)
|
273 |
+
speech_type_insert_btns.append(insert_btn)
|
274 |
+
|
275 |
+
# Button to add speech type
|
276 |
+
add_speech_type_btn = gr.Button("Add Speech Type")
|
277 |
+
|
278 |
+
# Keep track of current number of speech types
|
279 |
+
speech_type_count = gr.State(value=0)
|
280 |
+
|
281 |
+
# Function to add a speech type
|
282 |
+
def add_speech_type_fn(speech_type_count):
|
283 |
+
if speech_type_count < max_speech_types - 1:
|
284 |
+
speech_type_count += 1
|
285 |
+
# Prepare updates for the rows
|
286 |
+
row_updates = []
|
287 |
+
for i in range(max_speech_types - 1):
|
288 |
+
if i < speech_type_count:
|
289 |
+
row_updates.append(gr.update(visible=True))
|
290 |
+
else:
|
291 |
+
row_updates.append(gr.update())
|
292 |
+
else:
|
293 |
+
# Optionally, show a warning
|
294 |
+
row_updates = [gr.update() for _ in range(max_speech_types - 1)]
|
295 |
+
return [speech_type_count] + row_updates
|
296 |
+
|
297 |
+
add_speech_type_btn.click(
|
298 |
+
add_speech_type_fn, inputs=speech_type_count, outputs=[speech_type_count] + speech_type_rows
|
299 |
+
)
|
300 |
+
|
301 |
+
# Function to delete a speech type
|
302 |
+
def make_delete_speech_type_fn(index):
|
303 |
+
def delete_speech_type_fn(speech_type_count):
|
304 |
+
# Prepare updates
|
305 |
+
row_updates = []
|
306 |
+
|
307 |
+
for i in range(max_speech_types - 1):
|
308 |
+
if i == index:
|
309 |
+
row_updates.append(gr.update(visible=False))
|
310 |
+
else:
|
311 |
+
row_updates.append(gr.update())
|
312 |
+
|
313 |
+
speech_type_count = max(0, speech_type_count - 1)
|
314 |
+
|
315 |
+
return [speech_type_count] + row_updates
|
316 |
+
|
317 |
+
return delete_speech_type_fn
|
318 |
+
|
319 |
+
# Update delete button clicks
|
320 |
+
for i, delete_btn in enumerate(speech_type_delete_btns):
|
321 |
+
delete_fn = make_delete_speech_type_fn(i)
|
322 |
+
delete_btn.click(delete_fn, inputs=speech_type_count, outputs=[speech_type_count] + speech_type_rows)
|
323 |
+
|
324 |
+
# Text input for the prompt
|
325 |
+
gen_text_input_multistyle = gr.Textbox(
|
326 |
+
label="Text to Generate",
|
327 |
+
lines=10,
|
328 |
+
placeholder="Enter the script with speaker names (or emotion types) at the start of each block, e.g.:\n\n{Regular} Hello, I'd like to order a sandwich please.\n{Surprised} What do you mean you're out of bread?\n{Sad} I really wanted a sandwich though...\n{Angry} You know what, darn you and your little shop!\n{Whisper} I'll just go back home and cry now.\n{Shouting} Why me?!",
|
329 |
+
)
|
330 |
+
|
331 |
+
def make_insert_speech_type_fn(index):
|
332 |
+
def insert_speech_type_fn(current_text, speech_type_name):
|
333 |
+
current_text = current_text or ""
|
334 |
+
speech_type_name = speech_type_name or "None"
|
335 |
+
updated_text = current_text + f"{{{speech_type_name}}} "
|
336 |
+
return gr.update(value=updated_text)
|
337 |
+
|
338 |
+
return insert_speech_type_fn
|
339 |
+
|
340 |
+
for i, insert_btn in enumerate(speech_type_insert_btns):
|
341 |
+
insert_fn = make_insert_speech_type_fn(i)
|
342 |
+
insert_btn.click(
|
343 |
+
insert_fn,
|
344 |
+
inputs=[gen_text_input_multistyle, speech_type_names[i]],
|
345 |
+
outputs=gen_text_input_multistyle,
|
346 |
+
)
|
347 |
+
|
348 |
+
# Model choice
|
349 |
+
model_choice_multistyle = gr.Radio(choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS")
|
350 |
+
|
351 |
+
with gr.Accordion("Advanced Settings", open=False):
|
352 |
+
remove_silence_multistyle = gr.Checkbox(
|
353 |
+
label="Remove Silences",
|
354 |
+
value=False,
|
355 |
+
)
|
356 |
+
|
357 |
+
# Generate button
|
358 |
+
generate_multistyle_btn = gr.Button("Generate Multi-Style Speech", variant="primary")
|
359 |
+
|
360 |
+
# Output audio
|
361 |
+
audio_output_multistyle = gr.Audio(label="Synthesized Audio")
|
362 |
+
|
363 |
+
@gpu_decorator
|
364 |
+
def generate_multistyle_speech(
|
365 |
+
regular_audio,
|
366 |
+
regular_ref_text,
|
367 |
+
gen_text,
|
368 |
+
*args,
|
369 |
+
):
|
370 |
+
num_additional_speech_types = max_speech_types - 1
|
371 |
+
speech_type_names_list = args[:num_additional_speech_types]
|
372 |
+
speech_type_audios_list = args[num_additional_speech_types : 2 * num_additional_speech_types]
|
373 |
+
speech_type_ref_texts_list = args[2 * num_additional_speech_types : 3 * num_additional_speech_types]
|
374 |
+
model_choice = args[3 * num_additional_speech_types + 1]
|
375 |
+
remove_silence = args[3 * num_additional_speech_types + 1]
|
376 |
+
|
377 |
+
# Collect the speech types and their audios into a dict
|
378 |
+
speech_types = {"Regular": {"audio": regular_audio, "ref_text": regular_ref_text}}
|
379 |
+
|
380 |
+
for name_input, audio_input, ref_text_input in zip(
|
381 |
+
speech_type_names_list, speech_type_audios_list, speech_type_ref_texts_list
|
382 |
+
):
|
383 |
+
if name_input and audio_input:
|
384 |
+
speech_types[name_input] = {"audio": audio_input, "ref_text": ref_text_input}
|
385 |
+
|
386 |
+
# Parse the gen_text into segments
|
387 |
+
segments = parse_speechtypes_text(gen_text)
|
388 |
+
|
389 |
+
# For each segment, generate speech
|
390 |
+
generated_audio_segments = []
|
391 |
+
current_style = "Regular"
|
392 |
+
|
393 |
+
for segment in segments:
|
394 |
+
style = segment["style"]
|
395 |
+
text = segment["text"]
|
396 |
+
|
397 |
+
if style in speech_types:
|
398 |
+
current_style = style
|
399 |
+
else:
|
400 |
+
# If style not available, default to Regular
|
401 |
+
current_style = "Regular"
|
402 |
+
|
403 |
+
ref_audio = speech_types[current_style]["audio"]
|
404 |
+
ref_text = speech_types[current_style].get("ref_text", "")
|
405 |
+
|
406 |
+
# Generate speech for this segment
|
407 |
+
audio, _ = infer(
|
408 |
+
ref_audio, ref_text, text, model_choice, remove_silence, 0, show_info=print
|
409 |
+
) # show_info=print no pull to top when generating
|
410 |
+
sr, audio_data = audio
|
411 |
+
|
412 |
+
generated_audio_segments.append(audio_data)
|
413 |
+
|
414 |
+
# Concatenate all audio segments
|
415 |
+
if generated_audio_segments:
|
416 |
+
final_audio_data = np.concatenate(generated_audio_segments)
|
417 |
+
return (sr, final_audio_data)
|
418 |
+
else:
|
419 |
+
gr.Warning("No audio generated.")
|
420 |
+
return None
|
421 |
+
|
422 |
+
generate_multistyle_btn.click(
|
423 |
+
generate_multistyle_speech,
|
424 |
+
inputs=[
|
425 |
+
regular_audio,
|
426 |
+
regular_ref_text,
|
427 |
+
gen_text_input_multistyle,
|
428 |
+
]
|
429 |
+
+ speech_type_names
|
430 |
+
+ speech_type_audios
|
431 |
+
+ speech_type_ref_texts
|
432 |
+
+ [
|
433 |
+
model_choice_multistyle,
|
434 |
+
remove_silence_multistyle,
|
435 |
+
],
|
436 |
+
outputs=audio_output_multistyle,
|
437 |
+
)
|
438 |
+
|
439 |
+
# Validation function to disable Generate button if speech types are missing
|
440 |
+
def validate_speech_types(gen_text, regular_name, *args):
|
441 |
+
num_additional_speech_types = max_speech_types - 1
|
442 |
+
speech_type_names_list = args[:num_additional_speech_types]
|
443 |
+
|
444 |
+
# Collect the speech types names
|
445 |
+
speech_types_available = set()
|
446 |
+
if regular_name:
|
447 |
+
speech_types_available.add(regular_name)
|
448 |
+
for name_input in speech_type_names_list:
|
449 |
+
if name_input:
|
450 |
+
speech_types_available.add(name_input)
|
451 |
+
|
452 |
+
# Parse the gen_text to get the speech types used
|
453 |
+
segments = parse_speechtypes_text(gen_text)
|
454 |
+
speech_types_in_text = set(segment["style"] for segment in segments)
|
455 |
+
|
456 |
+
# Check if all speech types in text are available
|
457 |
+
missing_speech_types = speech_types_in_text - speech_types_available
|
458 |
+
|
459 |
+
if missing_speech_types:
|
460 |
+
# Disable the generate button
|
461 |
+
return gr.update(interactive=False)
|
462 |
+
else:
|
463 |
+
# Enable the generate button
|
464 |
+
return gr.update(interactive=True)
|
465 |
+
|
466 |
+
gen_text_input_multistyle.change(
|
467 |
+
validate_speech_types,
|
468 |
+
inputs=[gen_text_input_multistyle, regular_name] + speech_type_names,
|
469 |
+
outputs=generate_multistyle_btn,
|
470 |
+
)
|
471 |
+
|
472 |
+
|
473 |
+
with gr.Blocks() as app_chat:
|
474 |
+
gr.Markdown(
|
475 |
+
"""
|
476 |
+
# Voice Chat
|
477 |
+
Have a conversation with an AI using your reference voice!
|
478 |
+
1. Upload a reference audio clip and optionally its transcript.
|
479 |
+
2. Load the chat model.
|
480 |
+
3. Record your message through your microphone.
|
481 |
+
4. The AI will respond using the reference voice.
|
482 |
+
"""
|
483 |
+
)
|
484 |
+
|
485 |
+
if not USING_SPACES:
|
486 |
+
load_chat_model_btn = gr.Button("Load Chat Model", variant="primary")
|
487 |
+
|
488 |
+
chat_interface_container = gr.Column(visible=False)
|
489 |
+
|
490 |
+
@gpu_decorator
|
491 |
+
def load_chat_model():
|
492 |
+
global chat_model_state, chat_tokenizer_state
|
493 |
+
if chat_model_state is None:
|
494 |
+
show_info = gr.Info
|
495 |
+
show_info("Loading chat model...")
|
496 |
+
model_name = "Qwen/Qwen2.5-3B-Instruct"
|
497 |
+
chat_model_state = AutoModelForCausalLM.from_pretrained(
|
498 |
+
model_name, torch_dtype="auto", device_map="auto"
|
499 |
+
)
|
500 |
+
chat_tokenizer_state = AutoTokenizer.from_pretrained(model_name)
|
501 |
+
show_info("Chat model loaded.")
|
502 |
+
|
503 |
+
return gr.update(visible=False), gr.update(visible=True)
|
504 |
+
|
505 |
+
load_chat_model_btn.click(load_chat_model, outputs=[load_chat_model_btn, chat_interface_container])
|
506 |
+
|
507 |
+
else:
|
508 |
+
chat_interface_container = gr.Column()
|
509 |
+
|
510 |
+
if chat_model_state is None:
|
511 |
+
model_name = "Qwen/Qwen2.5-3B-Instruct"
|
512 |
+
chat_model_state = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
|
513 |
+
chat_tokenizer_state = AutoTokenizer.from_pretrained(model_name)
|
514 |
+
|
515 |
+
with chat_interface_container:
|
516 |
+
with gr.Row():
|
517 |
+
with gr.Column():
|
518 |
+
ref_audio_chat = gr.Audio(label="Reference Audio", type="filepath")
|
519 |
+
with gr.Column():
|
520 |
+
with gr.Accordion("Advanced Settings", open=False):
|
521 |
+
model_choice_chat = gr.Radio(
|
522 |
+
choices=["F5-TTS", "E2-TTS"],
|
523 |
+
label="TTS Model",
|
524 |
+
value="F5-TTS",
|
525 |
+
)
|
526 |
+
remove_silence_chat = gr.Checkbox(
|
527 |
+
label="Remove Silences",
|
528 |
+
value=True,
|
529 |
+
)
|
530 |
+
ref_text_chat = gr.Textbox(
|
531 |
+
label="Reference Text",
|
532 |
+
info="Optional: Leave blank to auto-transcribe",
|
533 |
+
lines=2,
|
534 |
+
)
|
535 |
+
system_prompt_chat = gr.Textbox(
|
536 |
+
label="System Prompt",
|
537 |
+
value="You are not an AI assistant, you are whoever the user says you are. You must stay in character. Keep your responses concise since they will be spoken out loud.",
|
538 |
+
lines=2,
|
539 |
+
)
|
540 |
+
|
541 |
+
chatbot_interface = gr.Chatbot(label="Conversation")
|
542 |
+
|
543 |
+
with gr.Row():
|
544 |
+
with gr.Column():
|
545 |
+
audio_input_chat = gr.Microphone(
|
546 |
+
label="Speak your message",
|
547 |
+
type="filepath",
|
548 |
+
)
|
549 |
+
audio_output_chat = gr.Audio(autoplay=True)
|
550 |
+
with gr.Column():
|
551 |
+
text_input_chat = gr.Textbox(
|
552 |
+
label="Type your message",
|
553 |
+
lines=1,
|
554 |
+
)
|
555 |
+
send_btn_chat = gr.Button("Send")
|
556 |
+
clear_btn_chat = gr.Button("Clear Conversation")
|
557 |
+
|
558 |
+
conversation_state = gr.State(
|
559 |
+
value=[
|
560 |
+
{
|
561 |
+
"role": "system",
|
562 |
+
"content": "You are not an AI assistant, you are whoever the user says you are. You must stay in character. Keep your responses concise since they will be spoken out loud.",
|
563 |
+
}
|
564 |
+
]
|
565 |
+
)
|
566 |
+
|
567 |
+
# Modify process_audio_input to use model and tokenizer from state
|
568 |
+
@gpu_decorator
|
569 |
+
def process_audio_input(audio_path, text, history, conv_state):
|
570 |
+
"""Handle audio or text input from user"""
|
571 |
+
|
572 |
+
if not audio_path and not text.strip():
|
573 |
+
return history, conv_state, ""
|
574 |
+
|
575 |
+
if audio_path:
|
576 |
+
text = preprocess_ref_audio_text(audio_path, text)[1]
|
577 |
+
|
578 |
+
if not text.strip():
|
579 |
+
return history, conv_state, ""
|
580 |
+
|
581 |
+
conv_state.append({"role": "user", "content": text})
|
582 |
+
history.append((text, None))
|
583 |
+
|
584 |
+
response = generate_response(conv_state, chat_model_state, chat_tokenizer_state)
|
585 |
+
|
586 |
+
conv_state.append({"role": "assistant", "content": response})
|
587 |
+
history[-1] = (text, response)
|
588 |
+
|
589 |
+
return history, conv_state, ""
|
590 |
+
|
591 |
+
@gpu_decorator
|
592 |
+
def generate_audio_response(history, ref_audio, ref_text, model, remove_silence):
|
593 |
+
"""Generate TTS audio for AI response"""
|
594 |
+
if not history or not ref_audio:
|
595 |
+
return None
|
596 |
+
|
597 |
+
last_user_message, last_ai_response = history[-1]
|
598 |
+
if not last_ai_response:
|
599 |
+
return None
|
600 |
+
|
601 |
+
audio_result, _ = infer(
|
602 |
+
ref_audio,
|
603 |
+
ref_text,
|
604 |
+
last_ai_response,
|
605 |
+
model,
|
606 |
+
remove_silence,
|
607 |
+
cross_fade_duration=0.15,
|
608 |
+
speed=1.0,
|
609 |
+
show_info=print, # show_info=print no pull to top when generating
|
610 |
+
)
|
611 |
+
return audio_result
|
612 |
+
|
613 |
+
def clear_conversation():
|
614 |
+
"""Reset the conversation"""
|
615 |
+
return [], [
|
616 |
+
{
|
617 |
+
"role": "system",
|
618 |
+
"content": "You are not an AI assistant, you are whoever the user says you are. You must stay in character. Keep your responses concise since they will be spoken out loud.",
|
619 |
+
}
|
620 |
+
]
|
621 |
+
|
622 |
+
def update_system_prompt(new_prompt):
|
623 |
+
"""Update the system prompt and reset the conversation"""
|
624 |
+
new_conv_state = [{"role": "system", "content": new_prompt}]
|
625 |
+
return [], new_conv_state
|
626 |
+
|
627 |
+
# Handle audio input
|
628 |
+
audio_input_chat.stop_recording(
|
629 |
+
process_audio_input,
|
630 |
+
inputs=[audio_input_chat, text_input_chat, chatbot_interface, conversation_state],
|
631 |
+
outputs=[chatbot_interface, conversation_state],
|
632 |
+
).then(
|
633 |
+
generate_audio_response,
|
634 |
+
inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, model_choice_chat, remove_silence_chat],
|
635 |
+
outputs=[audio_output_chat],
|
636 |
+
).then(
|
637 |
+
lambda: None,
|
638 |
+
None,
|
639 |
+
audio_input_chat,
|
640 |
+
)
|
641 |
+
|
642 |
+
# Handle text input
|
643 |
+
text_input_chat.submit(
|
644 |
+
process_audio_input,
|
645 |
+
inputs=[audio_input_chat, text_input_chat, chatbot_interface, conversation_state],
|
646 |
+
outputs=[chatbot_interface, conversation_state],
|
647 |
+
).then(
|
648 |
+
generate_audio_response,
|
649 |
+
inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, model_choice_chat, remove_silence_chat],
|
650 |
+
outputs=[audio_output_chat],
|
651 |
+
).then(
|
652 |
+
lambda: None,
|
653 |
+
None,
|
654 |
+
text_input_chat,
|
655 |
+
)
|
656 |
+
|
657 |
+
# Handle send button
|
658 |
+
send_btn_chat.click(
|
659 |
+
process_audio_input,
|
660 |
+
inputs=[audio_input_chat, text_input_chat, chatbot_interface, conversation_state],
|
661 |
+
outputs=[chatbot_interface, conversation_state],
|
662 |
+
).then(
|
663 |
+
generate_audio_response,
|
664 |
+
inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, model_choice_chat, remove_silence_chat],
|
665 |
+
outputs=[audio_output_chat],
|
666 |
+
).then(
|
667 |
+
lambda: None,
|
668 |
+
None,
|
669 |
+
text_input_chat,
|
670 |
+
)
|
671 |
+
|
672 |
+
# Handle clear button
|
673 |
+
clear_btn_chat.click(
|
674 |
+
clear_conversation,
|
675 |
+
outputs=[chatbot_interface, conversation_state],
|
676 |
+
)
|
677 |
+
|
678 |
+
# Handle system prompt change and reset conversation
|
679 |
+
system_prompt_chat.change(
|
680 |
+
update_system_prompt,
|
681 |
+
inputs=system_prompt_chat,
|
682 |
+
outputs=[chatbot_interface, conversation_state],
|
683 |
+
)
|
684 |
+
|
685 |
+
|
686 |
+
with gr.Blocks() as app:
|
687 |
+
gr.Markdown(
|
688 |
+
"""
|
689 |
+
# E2/F5 TTS
|
690 |
+
|
691 |
+
This is a local web UI for F5 TTS with advanced batch processing support. This app supports the following TTS models:
|
692 |
+
|
693 |
+
* [F5-TTS](https://arxiv.org/abs/2410.06885) (A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching)
|
694 |
+
* [E2 TTS](https://arxiv.org/abs/2406.18009) (Embarrassingly Easy Fully Non-Autoregressive Zero-Shot TTS)
|
695 |
+
|
696 |
+
The checkpoints support English and Chinese.
|
697 |
+
|
698 |
+
If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s, and shortening your prompt.
|
699 |
+
|
700 |
+
**NOTE: Reference text will be automatically transcribed with Whisper if not provided. For best results, keep your reference clips short (<15s). Ensure the audio is fully uploaded before generating.**
|
701 |
+
"""
|
702 |
+
)
|
703 |
+
gr.TabbedInterface(
|
704 |
+
[app_tts, app_multistyle, app_chat, app_credits],
|
705 |
+
["TTS", "Multi-Speech", "Voice-Chat", "Credits"],
|
706 |
+
)
|
707 |
+
|
708 |
+
|
709 |
+
@click.command()
|
710 |
+
@click.option("--port", "-p", default=None, type=int, help="Port to run the app on")
|
711 |
+
@click.option("--host", "-H", default=None, help="Host to run the app on")
|
712 |
+
@click.option(
|
713 |
+
"--share",
|
714 |
+
"-s",
|
715 |
+
default=False,
|
716 |
+
is_flag=True,
|
717 |
+
help="Share the app via Gradio share link",
|
718 |
+
)
|
719 |
+
@click.option("--api", "-a", default=True, is_flag=True, help="Allow API access")
|
720 |
+
def main(port, host, share, api):
|
721 |
+
global app
|
722 |
+
print("Starting app...")
|
723 |
+
app.queue(api_open=api).launch(server_name=host, server_port=port, share=share, show_api=api)
|
724 |
+
|
725 |
+
|
726 |
+
if __name__ == "__main__":
|
727 |
+
if not USING_SPACES:
|
728 |
+
main()
|
729 |
+
else:
|
730 |
+
app.queue().launch()
|
finetune-cli.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
from model import CFM, UNetT, DiT, Trainer
|
3 |
+
from model.utils import get_tokenizer
|
4 |
+
from model.dataset import load_dataset
|
5 |
+
from cached_path import cached_path
|
6 |
+
import shutil
|
7 |
+
import os
|
8 |
+
|
9 |
+
# -------------------------- Dataset Settings --------------------------- #
|
10 |
+
target_sample_rate = 24000
|
11 |
+
n_mel_channels = 100
|
12 |
+
hop_length = 256
|
13 |
+
|
14 |
+
|
15 |
+
# -------------------------- Argument Parsing --------------------------- #
|
16 |
+
def parse_args():
|
17 |
+
parser = argparse.ArgumentParser(description="Train CFM Model")
|
18 |
+
|
19 |
+
parser.add_argument(
|
20 |
+
"--exp_name", type=str, default="F5TTS_Base", choices=["F5TTS_Base", "E2TTS_Base"], help="Experiment name"
|
21 |
+
)
|
22 |
+
parser.add_argument("--dataset_name", type=str, default="Emilia_ZH_EN", help="Name of the dataset to use")
|
23 |
+
parser.add_argument("--learning_rate", type=float, default=1e-4, help="Learning rate for training")
|
24 |
+
parser.add_argument("--batch_size_per_gpu", type=int, default=256, help="Batch size per GPU")
|
25 |
+
parser.add_argument(
|
26 |
+
"--batch_size_type", type=str, default="frame", choices=["frame", "sample"], help="Batch size type"
|
27 |
+
)
|
28 |
+
parser.add_argument("--max_samples", type=int, default=16, help="Max sequences per batch")
|
29 |
+
parser.add_argument("--grad_accumulation_steps", type=int, default=1, help="Gradient accumulation steps")
|
30 |
+
parser.add_argument("--max_grad_norm", type=float, default=1.0, help="Max gradient norm for clipping")
|
31 |
+
parser.add_argument("--epochs", type=int, default=10, help="Number of training epochs")
|
32 |
+
parser.add_argument("--num_warmup_updates", type=int, default=5, help="Warmup steps")
|
33 |
+
parser.add_argument("--save_per_updates", type=int, default=10, help="Save checkpoint every X steps")
|
34 |
+
parser.add_argument("--last_per_steps", type=int, default=10, help="Save last checkpoint every X steps")
|
35 |
+
parser.add_argument("--finetune", type=bool, default=True, help="Use Finetune")
|
36 |
+
|
37 |
+
parser.add_argument(
|
38 |
+
"--tokenizer", type=str, default="pinyin", choices=["pinyin", "char", "custom"], help="Tokenizer type"
|
39 |
+
)
|
40 |
+
parser.add_argument(
|
41 |
+
"--tokenizer_path",
|
42 |
+
type=str,
|
43 |
+
default=None,
|
44 |
+
help="Path to custom tokenizer vocab file (only used if tokenizer = 'custom')",
|
45 |
+
)
|
46 |
+
|
47 |
+
return parser.parse_args()
|
48 |
+
|
49 |
+
|
50 |
+
# -------------------------- Training Settings -------------------------- #
|
51 |
+
|
52 |
+
|
53 |
+
def main():
|
54 |
+
args = parse_args()
|
55 |
+
|
56 |
+
# Model parameters based on experiment name
|
57 |
+
if args.exp_name == "F5TTS_Base":
|
58 |
+
wandb_resume_id = None
|
59 |
+
model_cls = DiT
|
60 |
+
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
61 |
+
if args.finetune:
|
62 |
+
ckpt_path = str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.pt"))
|
63 |
+
elif args.exp_name == "E2TTS_Base":
|
64 |
+
wandb_resume_id = None
|
65 |
+
model_cls = UNetT
|
66 |
+
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
67 |
+
if args.finetune:
|
68 |
+
ckpt_path = str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.pt"))
|
69 |
+
|
70 |
+
if args.finetune:
|
71 |
+
path_ckpt = os.path.join("ckpts", args.dataset_name)
|
72 |
+
if not os.path.isdir(path_ckpt):
|
73 |
+
os.makedirs(path_ckpt, exist_ok=True)
|
74 |
+
shutil.copy2(ckpt_path, os.path.join(path_ckpt, os.path.basename(ckpt_path)))
|
75 |
+
|
76 |
+
checkpoint_path = os.path.join("ckpts", args.dataset_name)
|
77 |
+
|
78 |
+
# Use the tokenizer and tokenizer_path provided in the command line arguments
|
79 |
+
tokenizer = args.tokenizer
|
80 |
+
if tokenizer == "custom":
|
81 |
+
if not args.tokenizer_path:
|
82 |
+
raise ValueError("Custom tokenizer selected, but no tokenizer_path provided.")
|
83 |
+
tokenizer_path = args.tokenizer_path
|
84 |
+
else:
|
85 |
+
tokenizer_path = args.dataset_name
|
86 |
+
|
87 |
+
vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)
|
88 |
+
|
89 |
+
mel_spec_kwargs = dict(
|
90 |
+
target_sample_rate=target_sample_rate,
|
91 |
+
n_mel_channels=n_mel_channels,
|
92 |
+
hop_length=hop_length,
|
93 |
+
)
|
94 |
+
|
95 |
+
e2tts = CFM(
|
96 |
+
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
|
97 |
+
mel_spec_kwargs=mel_spec_kwargs,
|
98 |
+
vocab_char_map=vocab_char_map,
|
99 |
+
)
|
100 |
+
|
101 |
+
trainer = Trainer(
|
102 |
+
e2tts,
|
103 |
+
args.epochs,
|
104 |
+
args.learning_rate,
|
105 |
+
num_warmup_updates=args.num_warmup_updates,
|
106 |
+
save_per_updates=args.save_per_updates,
|
107 |
+
checkpoint_path=checkpoint_path,
|
108 |
+
batch_size=args.batch_size_per_gpu,
|
109 |
+
batch_size_type=args.batch_size_type,
|
110 |
+
max_samples=args.max_samples,
|
111 |
+
grad_accumulation_steps=args.grad_accumulation_steps,
|
112 |
+
max_grad_norm=args.max_grad_norm,
|
113 |
+
wandb_project="CFM-TTS",
|
114 |
+
wandb_run_name=args.exp_name,
|
115 |
+
wandb_resume_id=wandb_resume_id,
|
116 |
+
last_per_steps=args.last_per_steps,
|
117 |
+
)
|
118 |
+
|
119 |
+
train_dataset = load_dataset(args.dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs)
|
120 |
+
trainer.train(
|
121 |
+
train_dataset,
|
122 |
+
resumable_with_seed=666, # seed for shuffling dataset
|
123 |
+
)
|
124 |
+
|
125 |
+
|
126 |
+
if __name__ == "__main__":
|
127 |
+
main()
|
finetune_gradio.py
ADDED
@@ -0,0 +1,944 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
|
4 |
+
import tempfile
|
5 |
+
import random
|
6 |
+
from transformers import pipeline
|
7 |
+
import gradio as gr
|
8 |
+
import torch
|
9 |
+
import gc
|
10 |
+
import click
|
11 |
+
import torchaudio
|
12 |
+
from glob import glob
|
13 |
+
import librosa
|
14 |
+
import numpy as np
|
15 |
+
from scipy.io import wavfile
|
16 |
+
import shutil
|
17 |
+
import time
|
18 |
+
|
19 |
+
import json
|
20 |
+
from model.utils import convert_char_to_pinyin
|
21 |
+
import signal
|
22 |
+
import psutil
|
23 |
+
import platform
|
24 |
+
import subprocess
|
25 |
+
from datasets.arrow_writer import ArrowWriter
|
26 |
+
from datasets import Dataset as Dataset_
|
27 |
+
from api import F5TTS
|
28 |
+
|
29 |
+
|
30 |
+
training_process = None
|
31 |
+
system = platform.system()
|
32 |
+
python_executable = sys.executable or "python"
|
33 |
+
tts_api = None
|
34 |
+
last_checkpoint = ""
|
35 |
+
last_device = ""
|
36 |
+
|
37 |
+
path_data = "data"
|
38 |
+
|
39 |
+
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
40 |
+
|
41 |
+
pipe = None
|
42 |
+
|
43 |
+
|
44 |
+
# Load metadata
|
45 |
+
def get_audio_duration(audio_path):
|
46 |
+
"""Calculate the duration of an audio file."""
|
47 |
+
audio, sample_rate = torchaudio.load(audio_path)
|
48 |
+
num_channels = audio.shape[0]
|
49 |
+
return audio.shape[1] / (sample_rate * num_channels)
|
50 |
+
|
51 |
+
|
52 |
+
def clear_text(text):
|
53 |
+
"""Clean and prepare text by lowering the case and stripping whitespace."""
|
54 |
+
return text.lower().strip()
|
55 |
+
|
56 |
+
|
57 |
+
def get_rms(
|
58 |
+
y,
|
59 |
+
frame_length=2048,
|
60 |
+
hop_length=512,
|
61 |
+
pad_mode="constant",
|
62 |
+
): # https://github.com/RVC-Boss/GPT-SoVITS/blob/main/tools/slicer2.py
|
63 |
+
padding = (int(frame_length // 2), int(frame_length // 2))
|
64 |
+
y = np.pad(y, padding, mode=pad_mode)
|
65 |
+
|
66 |
+
axis = -1
|
67 |
+
# put our new within-frame axis at the end for now
|
68 |
+
out_strides = y.strides + tuple([y.strides[axis]])
|
69 |
+
# Reduce the shape on the framing axis
|
70 |
+
x_shape_trimmed = list(y.shape)
|
71 |
+
x_shape_trimmed[axis] -= frame_length - 1
|
72 |
+
out_shape = tuple(x_shape_trimmed) + tuple([frame_length])
|
73 |
+
xw = np.lib.stride_tricks.as_strided(y, shape=out_shape, strides=out_strides)
|
74 |
+
if axis < 0:
|
75 |
+
target_axis = axis - 1
|
76 |
+
else:
|
77 |
+
target_axis = axis + 1
|
78 |
+
xw = np.moveaxis(xw, -1, target_axis)
|
79 |
+
# Downsample along the target axis
|
80 |
+
slices = [slice(None)] * xw.ndim
|
81 |
+
slices[axis] = slice(0, None, hop_length)
|
82 |
+
x = xw[tuple(slices)]
|
83 |
+
|
84 |
+
# Calculate power
|
85 |
+
power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True)
|
86 |
+
|
87 |
+
return np.sqrt(power)
|
88 |
+
|
89 |
+
|
90 |
+
class Slicer: # https://github.com/RVC-Boss/GPT-SoVITS/blob/main/tools/slicer2.py
|
91 |
+
def __init__(
|
92 |
+
self,
|
93 |
+
sr: int,
|
94 |
+
threshold: float = -40.0,
|
95 |
+
min_length: int = 2000,
|
96 |
+
min_interval: int = 300,
|
97 |
+
hop_size: int = 20,
|
98 |
+
max_sil_kept: int = 2000,
|
99 |
+
):
|
100 |
+
if not min_length >= min_interval >= hop_size:
|
101 |
+
raise ValueError("The following condition must be satisfied: min_length >= min_interval >= hop_size")
|
102 |
+
if not max_sil_kept >= hop_size:
|
103 |
+
raise ValueError("The following condition must be satisfied: max_sil_kept >= hop_size")
|
104 |
+
min_interval = sr * min_interval / 1000
|
105 |
+
self.threshold = 10 ** (threshold / 20.0)
|
106 |
+
self.hop_size = round(sr * hop_size / 1000)
|
107 |
+
self.win_size = min(round(min_interval), 4 * self.hop_size)
|
108 |
+
self.min_length = round(sr * min_length / 1000 / self.hop_size)
|
109 |
+
self.min_interval = round(min_interval / self.hop_size)
|
110 |
+
self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
|
111 |
+
|
112 |
+
def _apply_slice(self, waveform, begin, end):
|
113 |
+
if len(waveform.shape) > 1:
|
114 |
+
return waveform[:, begin * self.hop_size : min(waveform.shape[1], end * self.hop_size)]
|
115 |
+
else:
|
116 |
+
return waveform[begin * self.hop_size : min(waveform.shape[0], end * self.hop_size)]
|
117 |
+
|
118 |
+
# @timeit
|
119 |
+
def slice(self, waveform):
|
120 |
+
if len(waveform.shape) > 1:
|
121 |
+
samples = waveform.mean(axis=0)
|
122 |
+
else:
|
123 |
+
samples = waveform
|
124 |
+
if samples.shape[0] <= self.min_length:
|
125 |
+
return [waveform]
|
126 |
+
rms_list = get_rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
|
127 |
+
sil_tags = []
|
128 |
+
silence_start = None
|
129 |
+
clip_start = 0
|
130 |
+
for i, rms in enumerate(rms_list):
|
131 |
+
# Keep looping while frame is silent.
|
132 |
+
if rms < self.threshold:
|
133 |
+
# Record start of silent frames.
|
134 |
+
if silence_start is None:
|
135 |
+
silence_start = i
|
136 |
+
continue
|
137 |
+
# Keep looping while frame is not silent and silence start has not been recorded.
|
138 |
+
if silence_start is None:
|
139 |
+
continue
|
140 |
+
# Clear recorded silence start if interval is not enough or clip is too short
|
141 |
+
is_leading_silence = silence_start == 0 and i > self.max_sil_kept
|
142 |
+
need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length
|
143 |
+
if not is_leading_silence and not need_slice_middle:
|
144 |
+
silence_start = None
|
145 |
+
continue
|
146 |
+
# Need slicing. Record the range of silent frames to be removed.
|
147 |
+
if i - silence_start <= self.max_sil_kept:
|
148 |
+
pos = rms_list[silence_start : i + 1].argmin() + silence_start
|
149 |
+
if silence_start == 0:
|
150 |
+
sil_tags.append((0, pos))
|
151 |
+
else:
|
152 |
+
sil_tags.append((pos, pos))
|
153 |
+
clip_start = pos
|
154 |
+
elif i - silence_start <= self.max_sil_kept * 2:
|
155 |
+
pos = rms_list[i - self.max_sil_kept : silence_start + self.max_sil_kept + 1].argmin()
|
156 |
+
pos += i - self.max_sil_kept
|
157 |
+
pos_l = rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start
|
158 |
+
pos_r = rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept
|
159 |
+
if silence_start == 0:
|
160 |
+
sil_tags.append((0, pos_r))
|
161 |
+
clip_start = pos_r
|
162 |
+
else:
|
163 |
+
sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
|
164 |
+
clip_start = max(pos_r, pos)
|
165 |
+
else:
|
166 |
+
pos_l = rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start
|
167 |
+
pos_r = rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept
|
168 |
+
if silence_start == 0:
|
169 |
+
sil_tags.append((0, pos_r))
|
170 |
+
else:
|
171 |
+
sil_tags.append((pos_l, pos_r))
|
172 |
+
clip_start = pos_r
|
173 |
+
silence_start = None
|
174 |
+
# Deal with trailing silence.
|
175 |
+
total_frames = rms_list.shape[0]
|
176 |
+
if silence_start is not None and total_frames - silence_start >= self.min_interval:
|
177 |
+
silence_end = min(total_frames, silence_start + self.max_sil_kept)
|
178 |
+
pos = rms_list[silence_start : silence_end + 1].argmin() + silence_start
|
179 |
+
sil_tags.append((pos, total_frames + 1))
|
180 |
+
# Apply and return slices.
|
181 |
+
####音频+起始时间+终止时间
|
182 |
+
if len(sil_tags) == 0:
|
183 |
+
return [[waveform, 0, int(total_frames * self.hop_size)]]
|
184 |
+
else:
|
185 |
+
chunks = []
|
186 |
+
if sil_tags[0][0] > 0:
|
187 |
+
chunks.append([self._apply_slice(waveform, 0, sil_tags[0][0]), 0, int(sil_tags[0][0] * self.hop_size)])
|
188 |
+
for i in range(len(sil_tags) - 1):
|
189 |
+
chunks.append(
|
190 |
+
[
|
191 |
+
self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0]),
|
192 |
+
int(sil_tags[i][1] * self.hop_size),
|
193 |
+
int(sil_tags[i + 1][0] * self.hop_size),
|
194 |
+
]
|
195 |
+
)
|
196 |
+
if sil_tags[-1][1] < total_frames:
|
197 |
+
chunks.append(
|
198 |
+
[
|
199 |
+
self._apply_slice(waveform, sil_tags[-1][1], total_frames),
|
200 |
+
int(sil_tags[-1][1] * self.hop_size),
|
201 |
+
int(total_frames * self.hop_size),
|
202 |
+
]
|
203 |
+
)
|
204 |
+
return chunks
|
205 |
+
|
206 |
+
|
207 |
+
# terminal
|
208 |
+
def terminate_process_tree(pid, including_parent=True):
|
209 |
+
try:
|
210 |
+
parent = psutil.Process(pid)
|
211 |
+
except psutil.NoSuchProcess:
|
212 |
+
# Process already terminated
|
213 |
+
return
|
214 |
+
|
215 |
+
children = parent.children(recursive=True)
|
216 |
+
for child in children:
|
217 |
+
try:
|
218 |
+
os.kill(child.pid, signal.SIGTERM) # or signal.SIGKILL
|
219 |
+
except OSError:
|
220 |
+
pass
|
221 |
+
if including_parent:
|
222 |
+
try:
|
223 |
+
os.kill(parent.pid, signal.SIGTERM) # or signal.SIGKILL
|
224 |
+
except OSError:
|
225 |
+
pass
|
226 |
+
|
227 |
+
|
228 |
+
def terminate_process(pid):
|
229 |
+
if system == "Windows":
|
230 |
+
cmd = f"taskkill /t /f /pid {pid}"
|
231 |
+
os.system(cmd)
|
232 |
+
else:
|
233 |
+
terminate_process_tree(pid)
|
234 |
+
|
235 |
+
|
236 |
+
def start_training(
|
237 |
+
dataset_name="",
|
238 |
+
exp_name="F5TTS_Base",
|
239 |
+
learning_rate=1e-4,
|
240 |
+
batch_size_per_gpu=400,
|
241 |
+
batch_size_type="frame",
|
242 |
+
max_samples=64,
|
243 |
+
grad_accumulation_steps=1,
|
244 |
+
max_grad_norm=1.0,
|
245 |
+
epochs=11,
|
246 |
+
num_warmup_updates=200,
|
247 |
+
save_per_updates=400,
|
248 |
+
last_per_steps=800,
|
249 |
+
finetune=True,
|
250 |
+
):
|
251 |
+
global training_process, tts_api
|
252 |
+
|
253 |
+
if tts_api is not None:
|
254 |
+
del tts_api
|
255 |
+
gc.collect()
|
256 |
+
torch.cuda.empty_cache()
|
257 |
+
tts_api = None
|
258 |
+
|
259 |
+
path_project = os.path.join(path_data, dataset_name + "_pinyin")
|
260 |
+
|
261 |
+
if not os.path.isdir(path_project):
|
262 |
+
yield (
|
263 |
+
f"There is not project with name {dataset_name}",
|
264 |
+
gr.update(interactive=True),
|
265 |
+
gr.update(interactive=False),
|
266 |
+
)
|
267 |
+
return
|
268 |
+
|
269 |
+
file_raw = os.path.join(path_project, "raw.arrow")
|
270 |
+
if not os.path.isfile(file_raw):
|
271 |
+
yield f"There is no file {file_raw}", gr.update(interactive=True), gr.update(interactive=False)
|
272 |
+
return
|
273 |
+
|
274 |
+
# Check if a training process is already running
|
275 |
+
if training_process is not None:
|
276 |
+
return "Train run already!", gr.update(interactive=False), gr.update(interactive=True)
|
277 |
+
|
278 |
+
yield "start train", gr.update(interactive=False), gr.update(interactive=False)
|
279 |
+
|
280 |
+
# Command to run the training script with the specified arguments
|
281 |
+
cmd = (
|
282 |
+
f"accelerate launch finetune-cli.py --exp_name {exp_name} "
|
283 |
+
f"--learning_rate {learning_rate} "
|
284 |
+
f"--batch_size_per_gpu {batch_size_per_gpu} "
|
285 |
+
f"--batch_size_type {batch_size_type} "
|
286 |
+
f"--max_samples {max_samples} "
|
287 |
+
f"--grad_accumulation_steps {grad_accumulation_steps} "
|
288 |
+
f"--max_grad_norm {max_grad_norm} "
|
289 |
+
f"--epochs {epochs} "
|
290 |
+
f"--num_warmup_updates {num_warmup_updates} "
|
291 |
+
f"--save_per_updates {save_per_updates} "
|
292 |
+
f"--last_per_steps {last_per_steps} "
|
293 |
+
f"--dataset_name {dataset_name}"
|
294 |
+
)
|
295 |
+
if finetune:
|
296 |
+
cmd += f" --finetune {finetune}"
|
297 |
+
|
298 |
+
print(cmd)
|
299 |
+
|
300 |
+
try:
|
301 |
+
# Start the training process
|
302 |
+
training_process = subprocess.Popen(cmd, shell=True)
|
303 |
+
|
304 |
+
time.sleep(5)
|
305 |
+
yield "train start", gr.update(interactive=False), gr.update(interactive=True)
|
306 |
+
|
307 |
+
# Wait for the training process to finish
|
308 |
+
training_process.wait()
|
309 |
+
time.sleep(1)
|
310 |
+
|
311 |
+
if training_process is None:
|
312 |
+
text_info = "train stop"
|
313 |
+
else:
|
314 |
+
text_info = "train complete !"
|
315 |
+
|
316 |
+
except Exception as e: # Catch all exceptions
|
317 |
+
# Ensure that we reset the training process variable in case of an error
|
318 |
+
text_info = f"An error occurred: {str(e)}"
|
319 |
+
|
320 |
+
training_process = None
|
321 |
+
|
322 |
+
yield text_info, gr.update(interactive=True), gr.update(interactive=False)
|
323 |
+
|
324 |
+
|
325 |
+
def stop_training():
|
326 |
+
global training_process
|
327 |
+
if training_process is None:
|
328 |
+
return "Train not run !", gr.update(interactive=True), gr.update(interactive=False)
|
329 |
+
terminate_process_tree(training_process.pid)
|
330 |
+
training_process = None
|
331 |
+
return "train stop", gr.update(interactive=True), gr.update(interactive=False)
|
332 |
+
|
333 |
+
|
334 |
+
def create_data_project(name):
|
335 |
+
name += "_pinyin"
|
336 |
+
os.makedirs(os.path.join(path_data, name), exist_ok=True)
|
337 |
+
os.makedirs(os.path.join(path_data, name, "dataset"), exist_ok=True)
|
338 |
+
|
339 |
+
|
340 |
+
def transcribe(file_audio, language="english"):
|
341 |
+
global pipe
|
342 |
+
|
343 |
+
if pipe is None:
|
344 |
+
pipe = pipeline(
|
345 |
+
"automatic-speech-recognition",
|
346 |
+
model="openai/whisper-large-v3-turbo",
|
347 |
+
torch_dtype=torch.float16,
|
348 |
+
device=device,
|
349 |
+
)
|
350 |
+
|
351 |
+
text_transcribe = pipe(
|
352 |
+
file_audio,
|
353 |
+
chunk_length_s=30,
|
354 |
+
batch_size=128,
|
355 |
+
generate_kwargs={"task": "transcribe", "language": language},
|
356 |
+
return_timestamps=False,
|
357 |
+
)["text"].strip()
|
358 |
+
return text_transcribe
|
359 |
+
|
360 |
+
|
361 |
+
def transcribe_all(name_project, audio_files, language, user=False, progress=gr.Progress()):
|
362 |
+
name_project += "_pinyin"
|
363 |
+
path_project = os.path.join(path_data, name_project)
|
364 |
+
path_dataset = os.path.join(path_project, "dataset")
|
365 |
+
path_project_wavs = os.path.join(path_project, "wavs")
|
366 |
+
file_metadata = os.path.join(path_project, "metadata.csv")
|
367 |
+
|
368 |
+
if audio_files is None:
|
369 |
+
return "You need to load an audio file."
|
370 |
+
|
371 |
+
if os.path.isdir(path_project_wavs):
|
372 |
+
shutil.rmtree(path_project_wavs)
|
373 |
+
|
374 |
+
if os.path.isfile(file_metadata):
|
375 |
+
os.remove(file_metadata)
|
376 |
+
|
377 |
+
os.makedirs(path_project_wavs, exist_ok=True)
|
378 |
+
|
379 |
+
if user:
|
380 |
+
file_audios = [
|
381 |
+
file
|
382 |
+
for format in ("*.wav", "*.ogg", "*.opus", "*.mp3", "*.flac")
|
383 |
+
for file in glob(os.path.join(path_dataset, format))
|
384 |
+
]
|
385 |
+
if file_audios == []:
|
386 |
+
return "No audio file was found in the dataset."
|
387 |
+
else:
|
388 |
+
file_audios = audio_files
|
389 |
+
|
390 |
+
alpha = 0.5
|
391 |
+
_max = 1.0
|
392 |
+
slicer = Slicer(24000)
|
393 |
+
|
394 |
+
num = 0
|
395 |
+
error_num = 0
|
396 |
+
data = ""
|
397 |
+
for file_audio in progress.tqdm(file_audios, desc="transcribe files", total=len((file_audios))):
|
398 |
+
audio, _ = librosa.load(file_audio, sr=24000, mono=True)
|
399 |
+
|
400 |
+
list_slicer = slicer.slice(audio)
|
401 |
+
for chunk, start, end in progress.tqdm(list_slicer, total=len(list_slicer), desc="slicer files"):
|
402 |
+
name_segment = os.path.join(f"segment_{num}")
|
403 |
+
file_segment = os.path.join(path_project_wavs, f"{name_segment}.wav")
|
404 |
+
|
405 |
+
tmp_max = np.abs(chunk).max()
|
406 |
+
if tmp_max > 1:
|
407 |
+
chunk /= tmp_max
|
408 |
+
chunk = (chunk / tmp_max * (_max * alpha)) + (1 - alpha) * chunk
|
409 |
+
wavfile.write(file_segment, 24000, (chunk * 32767).astype(np.int16))
|
410 |
+
|
411 |
+
try:
|
412 |
+
text = transcribe(file_segment, language)
|
413 |
+
text = text.lower().strip().replace('"', "")
|
414 |
+
|
415 |
+
data += f"{name_segment}|{text}\n"
|
416 |
+
|
417 |
+
num += 1
|
418 |
+
except: # noqa: E722
|
419 |
+
error_num += 1
|
420 |
+
|
421 |
+
with open(file_metadata, "w", encoding="utf-8") as f:
|
422 |
+
f.write(data)
|
423 |
+
|
424 |
+
if error_num != []:
|
425 |
+
error_text = f"\nerror files : {error_num}"
|
426 |
+
else:
|
427 |
+
error_text = ""
|
428 |
+
|
429 |
+
return f"transcribe complete samples : {num}\npath : {path_project_wavs}{error_text}"
|
430 |
+
|
431 |
+
|
432 |
+
def format_seconds_to_hms(seconds):
|
433 |
+
hours = int(seconds / 3600)
|
434 |
+
minutes = int((seconds % 3600) / 60)
|
435 |
+
seconds = seconds % 60
|
436 |
+
return "{:02d}:{:02d}:{:02d}".format(hours, minutes, int(seconds))
|
437 |
+
|
438 |
+
|
439 |
+
def create_metadata(name_project, progress=gr.Progress()):
|
440 |
+
name_project += "_pinyin"
|
441 |
+
path_project = os.path.join(path_data, name_project)
|
442 |
+
path_project_wavs = os.path.join(path_project, "wavs")
|
443 |
+
file_metadata = os.path.join(path_project, "metadata.csv")
|
444 |
+
file_raw = os.path.join(path_project, "raw.arrow")
|
445 |
+
file_duration = os.path.join(path_project, "duration.json")
|
446 |
+
file_vocab = os.path.join(path_project, "vocab.txt")
|
447 |
+
|
448 |
+
if not os.path.isfile(file_metadata):
|
449 |
+
return "The file was not found in " + file_metadata
|
450 |
+
|
451 |
+
with open(file_metadata, "r", encoding="utf-8") as f:
|
452 |
+
data = f.read()
|
453 |
+
|
454 |
+
audio_path_list = []
|
455 |
+
text_list = []
|
456 |
+
duration_list = []
|
457 |
+
|
458 |
+
count = data.split("\n")
|
459 |
+
lenght = 0
|
460 |
+
result = []
|
461 |
+
error_files = []
|
462 |
+
for line in progress.tqdm(data.split("\n"), total=count):
|
463 |
+
sp_line = line.split("|")
|
464 |
+
if len(sp_line) != 2:
|
465 |
+
continue
|
466 |
+
name_audio, text = sp_line[:2]
|
467 |
+
|
468 |
+
file_audio = os.path.join(path_project_wavs, name_audio + ".wav")
|
469 |
+
|
470 |
+
if not os.path.isfile(file_audio):
|
471 |
+
error_files.append(file_audio)
|
472 |
+
continue
|
473 |
+
|
474 |
+
duraction = get_audio_duration(file_audio)
|
475 |
+
if duraction < 2 and duraction > 15:
|
476 |
+
continue
|
477 |
+
if len(text) < 4:
|
478 |
+
continue
|
479 |
+
|
480 |
+
text = clear_text(text)
|
481 |
+
text = convert_char_to_pinyin([text], polyphone=True)[0]
|
482 |
+
|
483 |
+
audio_path_list.append(file_audio)
|
484 |
+
duration_list.append(duraction)
|
485 |
+
text_list.append(text)
|
486 |
+
|
487 |
+
result.append({"audio_path": file_audio, "text": text, "duration": duraction})
|
488 |
+
|
489 |
+
lenght += duraction
|
490 |
+
|
491 |
+
if duration_list == []:
|
492 |
+
error_files_text = "\n".join(error_files)
|
493 |
+
return f"Error: No audio files found in the specified path : \n{error_files_text}"
|
494 |
+
|
495 |
+
min_second = round(min(duration_list), 2)
|
496 |
+
max_second = round(max(duration_list), 2)
|
497 |
+
|
498 |
+
with ArrowWriter(path=file_raw, writer_batch_size=1) as writer:
|
499 |
+
for line in progress.tqdm(result, total=len(result), desc="prepare data"):
|
500 |
+
writer.write(line)
|
501 |
+
|
502 |
+
with open(file_duration, "w", encoding="utf-8") as f:
|
503 |
+
json.dump({"duration": duration_list}, f, ensure_ascii=False)
|
504 |
+
|
505 |
+
file_vocab_finetune = "data/Emilia_ZH_EN_pinyin/vocab.txt"
|
506 |
+
if not os.path.isfile(file_vocab_finetune):
|
507 |
+
return "Error: Vocabulary file 'Emilia_ZH_EN_pinyin' not found!"
|
508 |
+
shutil.copy2(file_vocab_finetune, file_vocab)
|
509 |
+
|
510 |
+
if error_files != []:
|
511 |
+
error_text = "error files\n" + "\n".join(error_files)
|
512 |
+
else:
|
513 |
+
error_text = ""
|
514 |
+
|
515 |
+
return f"prepare complete \nsamples : {len(text_list)}\ntime data : {format_seconds_to_hms(lenght)}\nmin sec : {min_second}\nmax sec : {max_second}\nfile_arrow : {file_raw}\n{error_text}"
|
516 |
+
|
517 |
+
|
518 |
+
def check_user(value):
|
519 |
+
return gr.update(visible=not value), gr.update(visible=value)
|
520 |
+
|
521 |
+
|
522 |
+
def calculate_train(
|
523 |
+
name_project,
|
524 |
+
batch_size_type,
|
525 |
+
max_samples,
|
526 |
+
learning_rate,
|
527 |
+
num_warmup_updates,
|
528 |
+
save_per_updates,
|
529 |
+
last_per_steps,
|
530 |
+
finetune,
|
531 |
+
):
|
532 |
+
name_project += "_pinyin"
|
533 |
+
path_project = os.path.join(path_data, name_project)
|
534 |
+
file_duraction = os.path.join(path_project, "duration.json")
|
535 |
+
|
536 |
+
if not os.path.isfile(file_duraction):
|
537 |
+
return (
|
538 |
+
1000,
|
539 |
+
max_samples,
|
540 |
+
num_warmup_updates,
|
541 |
+
save_per_updates,
|
542 |
+
last_per_steps,
|
543 |
+
"project not found !",
|
544 |
+
learning_rate,
|
545 |
+
)
|
546 |
+
|
547 |
+
with open(file_duraction, "r") as file:
|
548 |
+
data = json.load(file)
|
549 |
+
|
550 |
+
duration_list = data["duration"]
|
551 |
+
|
552 |
+
samples = len(duration_list)
|
553 |
+
|
554 |
+
if torch.cuda.is_available():
|
555 |
+
gpu_properties = torch.cuda.get_device_properties(0)
|
556 |
+
total_memory = gpu_properties.total_memory / (1024**3)
|
557 |
+
elif torch.backends.mps.is_available():
|
558 |
+
total_memory = psutil.virtual_memory().available / (1024**3)
|
559 |
+
|
560 |
+
if batch_size_type == "frame":
|
561 |
+
batch = int(total_memory * 0.5)
|
562 |
+
batch = (lambda num: num + 1 if num % 2 != 0 else num)(batch)
|
563 |
+
batch_size_per_gpu = int(38400 / batch)
|
564 |
+
else:
|
565 |
+
batch_size_per_gpu = int(total_memory / 8)
|
566 |
+
batch_size_per_gpu = (lambda num: num + 1 if num % 2 != 0 else num)(batch_size_per_gpu)
|
567 |
+
batch = batch_size_per_gpu
|
568 |
+
|
569 |
+
if batch_size_per_gpu <= 0:
|
570 |
+
batch_size_per_gpu = 1
|
571 |
+
|
572 |
+
if samples < 64:
|
573 |
+
max_samples = int(samples * 0.25)
|
574 |
+
else:
|
575 |
+
max_samples = 64
|
576 |
+
|
577 |
+
num_warmup_updates = int(samples * 0.05)
|
578 |
+
save_per_updates = int(samples * 0.10)
|
579 |
+
last_per_steps = int(save_per_updates * 5)
|
580 |
+
|
581 |
+
max_samples = (lambda num: num + 1 if num % 2 != 0 else num)(max_samples)
|
582 |
+
num_warmup_updates = (lambda num: num + 1 if num % 2 != 0 else num)(num_warmup_updates)
|
583 |
+
save_per_updates = (lambda num: num + 1 if num % 2 != 0 else num)(save_per_updates)
|
584 |
+
last_per_steps = (lambda num: num + 1 if num % 2 != 0 else num)(last_per_steps)
|
585 |
+
|
586 |
+
if finetune:
|
587 |
+
learning_rate = 1e-5
|
588 |
+
else:
|
589 |
+
learning_rate = 7.5e-5
|
590 |
+
|
591 |
+
return batch_size_per_gpu, max_samples, num_warmup_updates, save_per_updates, last_per_steps, samples, learning_rate
|
592 |
+
|
593 |
+
|
594 |
+
def extract_and_save_ema_model(checkpoint_path: str, new_checkpoint_path: str) -> None:
|
595 |
+
try:
|
596 |
+
checkpoint = torch.load(checkpoint_path)
|
597 |
+
print("Original Checkpoint Keys:", checkpoint.keys())
|
598 |
+
|
599 |
+
ema_model_state_dict = checkpoint.get("ema_model_state_dict", None)
|
600 |
+
|
601 |
+
if ema_model_state_dict is not None:
|
602 |
+
new_checkpoint = {"ema_model_state_dict": ema_model_state_dict}
|
603 |
+
torch.save(new_checkpoint, new_checkpoint_path)
|
604 |
+
return f"New checkpoint saved at: {new_checkpoint_path}"
|
605 |
+
else:
|
606 |
+
return "No 'ema_model_state_dict' found in the checkpoint."
|
607 |
+
|
608 |
+
except Exception as e:
|
609 |
+
return f"An error occurred: {e}"
|
610 |
+
|
611 |
+
|
612 |
+
def vocab_check(project_name):
|
613 |
+
name_project = project_name + "_pinyin"
|
614 |
+
path_project = os.path.join(path_data, name_project)
|
615 |
+
|
616 |
+
file_metadata = os.path.join(path_project, "metadata.csv")
|
617 |
+
|
618 |
+
file_vocab = "data/Emilia_ZH_EN_pinyin/vocab.txt"
|
619 |
+
if not os.path.isfile(file_vocab):
|
620 |
+
return f"the file {file_vocab} not found !"
|
621 |
+
|
622 |
+
with open(file_vocab, "r", encoding="utf-8") as f:
|
623 |
+
data = f.read()
|
624 |
+
|
625 |
+
vocab = data.split("\n")
|
626 |
+
|
627 |
+
if not os.path.isfile(file_metadata):
|
628 |
+
return f"the file {file_metadata} not found !"
|
629 |
+
|
630 |
+
with open(file_metadata, "r", encoding="utf-8") as f:
|
631 |
+
data = f.read()
|
632 |
+
|
633 |
+
miss_symbols = []
|
634 |
+
miss_symbols_keep = {}
|
635 |
+
for item in data.split("\n"):
|
636 |
+
sp = item.split("|")
|
637 |
+
if len(sp) != 2:
|
638 |
+
continue
|
639 |
+
|
640 |
+
text = sp[1].lower().strip()
|
641 |
+
|
642 |
+
for t in text:
|
643 |
+
if t not in vocab and t not in miss_symbols_keep:
|
644 |
+
miss_symbols.append(t)
|
645 |
+
miss_symbols_keep[t] = t
|
646 |
+
if miss_symbols == []:
|
647 |
+
info = "You can train using your language !"
|
648 |
+
else:
|
649 |
+
info = f"The following symbols are missing in your language : {len(miss_symbols)}\n\n" + "\n".join(miss_symbols)
|
650 |
+
|
651 |
+
return info
|
652 |
+
|
653 |
+
|
654 |
+
def get_random_sample_prepare(project_name):
|
655 |
+
name_project = project_name + "_pinyin"
|
656 |
+
path_project = os.path.join(path_data, name_project)
|
657 |
+
file_arrow = os.path.join(path_project, "raw.arrow")
|
658 |
+
if not os.path.isfile(file_arrow):
|
659 |
+
return "", None
|
660 |
+
dataset = Dataset_.from_file(file_arrow)
|
661 |
+
random_sample = dataset.shuffle(seed=random.randint(0, 1000)).select([0])
|
662 |
+
text = "[" + " , ".join(["' " + t + " '" for t in random_sample["text"][0]]) + "]"
|
663 |
+
audio_path = random_sample["audio_path"][0]
|
664 |
+
return text, audio_path
|
665 |
+
|
666 |
+
|
667 |
+
def get_random_sample_transcribe(project_name):
|
668 |
+
name_project = project_name + "_pinyin"
|
669 |
+
path_project = os.path.join(path_data, name_project)
|
670 |
+
file_metadata = os.path.join(path_project, "metadata.csv")
|
671 |
+
if not os.path.isfile(file_metadata):
|
672 |
+
return "", None
|
673 |
+
|
674 |
+
data = ""
|
675 |
+
with open(file_metadata, "r", encoding="utf-8") as f:
|
676 |
+
data = f.read()
|
677 |
+
|
678 |
+
list_data = []
|
679 |
+
for item in data.split("\n"):
|
680 |
+
sp = item.split("|")
|
681 |
+
if len(sp) != 2:
|
682 |
+
continue
|
683 |
+
list_data.append([os.path.join(path_project, "wavs", sp[0] + ".wav"), sp[1]])
|
684 |
+
|
685 |
+
if list_data == []:
|
686 |
+
return "", None
|
687 |
+
|
688 |
+
random_item = random.choice(list_data)
|
689 |
+
|
690 |
+
return random_item[1], random_item[0]
|
691 |
+
|
692 |
+
|
693 |
+
def get_random_sample_infer(project_name):
|
694 |
+
text, audio = get_random_sample_transcribe(project_name)
|
695 |
+
return (
|
696 |
+
text,
|
697 |
+
text,
|
698 |
+
audio,
|
699 |
+
)
|
700 |
+
|
701 |
+
|
702 |
+
def infer(file_checkpoint, exp_name, ref_text, ref_audio, gen_text, nfe_step):
|
703 |
+
global last_checkpoint, last_device, tts_api
|
704 |
+
|
705 |
+
if not os.path.isfile(file_checkpoint):
|
706 |
+
return None
|
707 |
+
|
708 |
+
if training_process is not None:
|
709 |
+
device_test = "cpu"
|
710 |
+
else:
|
711 |
+
device_test = None
|
712 |
+
|
713 |
+
if last_checkpoint != file_checkpoint or last_device != device_test:
|
714 |
+
if last_checkpoint != file_checkpoint:
|
715 |
+
last_checkpoint = file_checkpoint
|
716 |
+
if last_device != device_test:
|
717 |
+
last_device = device_test
|
718 |
+
|
719 |
+
tts_api = F5TTS(model_type=exp_name, ckpt_file=file_checkpoint, device=device_test)
|
720 |
+
|
721 |
+
print("update", device_test, file_checkpoint)
|
722 |
+
|
723 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
724 |
+
tts_api.infer(gen_text=gen_text, ref_text=ref_text, ref_file=ref_audio, nfe_step=nfe_step, file_wave=f.name)
|
725 |
+
return f.name
|
726 |
+
|
727 |
+
|
728 |
+
with gr.Blocks() as app:
|
729 |
+
with gr.Row():
|
730 |
+
project_name = gr.Textbox(label="project name", value="my_speak")
|
731 |
+
bt_create = gr.Button("create new project")
|
732 |
+
|
733 |
+
bt_create.click(fn=create_data_project, inputs=[project_name])
|
734 |
+
|
735 |
+
with gr.Tabs():
|
736 |
+
with gr.TabItem("transcribe Data"):
|
737 |
+
ch_manual = gr.Checkbox(label="user", value=False)
|
738 |
+
|
739 |
+
mark_info_transcribe = gr.Markdown(
|
740 |
+
"""```plaintext
|
741 |
+
Place your 'wavs' folder and 'metadata.csv' file in the {your_project_name}' directory.
|
742 |
+
|
743 |
+
my_speak/
|
744 |
+
│
|
745 |
+
└── dataset/
|
746 |
+
├── audio1.wav
|
747 |
+
└── audio2.wav
|
748 |
+
...
|
749 |
+
```""",
|
750 |
+
visible=False,
|
751 |
+
)
|
752 |
+
|
753 |
+
audio_speaker = gr.File(label="voice", type="filepath", file_count="multiple")
|
754 |
+
txt_lang = gr.Text(label="Language", value="english")
|
755 |
+
bt_transcribe = bt_create = gr.Button("transcribe")
|
756 |
+
txt_info_transcribe = gr.Text(label="info", value="")
|
757 |
+
bt_transcribe.click(
|
758 |
+
fn=transcribe_all,
|
759 |
+
inputs=[project_name, audio_speaker, txt_lang, ch_manual],
|
760 |
+
outputs=[txt_info_transcribe],
|
761 |
+
)
|
762 |
+
ch_manual.change(fn=check_user, inputs=[ch_manual], outputs=[audio_speaker, mark_info_transcribe])
|
763 |
+
|
764 |
+
random_sample_transcribe = gr.Button("random sample")
|
765 |
+
|
766 |
+
with gr.Row():
|
767 |
+
random_text_transcribe = gr.Text(label="Text")
|
768 |
+
random_audio_transcribe = gr.Audio(label="Audio", type="filepath")
|
769 |
+
|
770 |
+
random_sample_transcribe.click(
|
771 |
+
fn=get_random_sample_transcribe,
|
772 |
+
inputs=[project_name],
|
773 |
+
outputs=[random_text_transcribe, random_audio_transcribe],
|
774 |
+
)
|
775 |
+
|
776 |
+
with gr.TabItem("prepare Data"):
|
777 |
+
gr.Markdown(
|
778 |
+
"""```plaintext
|
779 |
+
place all your wavs folder and your metadata.csv file in {your name project}
|
780 |
+
my_speak/
|
781 |
+
│
|
782 |
+
├── wavs/
|
783 |
+
│ ├── audio1.wav
|
784 |
+
│ └── audio2.wav
|
785 |
+
| ...
|
786 |
+
│
|
787 |
+
└── metadata.csv
|
788 |
+
|
789 |
+
file format metadata.csv
|
790 |
+
|
791 |
+
audio1|text1
|
792 |
+
audio2|text1
|
793 |
+
...
|
794 |
+
|
795 |
+
```"""
|
796 |
+
)
|
797 |
+
|
798 |
+
bt_prepare = bt_create = gr.Button("prepare")
|
799 |
+
txt_info_prepare = gr.Text(label="info", value="")
|
800 |
+
bt_prepare.click(fn=create_metadata, inputs=[project_name], outputs=[txt_info_prepare])
|
801 |
+
|
802 |
+
random_sample_prepare = gr.Button("random sample")
|
803 |
+
|
804 |
+
with gr.Row():
|
805 |
+
random_text_prepare = gr.Text(label="Pinyin")
|
806 |
+
random_audio_prepare = gr.Audio(label="Audio", type="filepath")
|
807 |
+
|
808 |
+
random_sample_prepare.click(
|
809 |
+
fn=get_random_sample_prepare, inputs=[project_name], outputs=[random_text_prepare, random_audio_prepare]
|
810 |
+
)
|
811 |
+
|
812 |
+
with gr.TabItem("train Data"):
|
813 |
+
with gr.Row():
|
814 |
+
bt_calculate = bt_create = gr.Button("Auto Settings")
|
815 |
+
ch_finetune = bt_create = gr.Checkbox(label="finetune", value=True)
|
816 |
+
lb_samples = gr.Label(label="samples")
|
817 |
+
batch_size_type = gr.Radio(label="Batch Size Type", choices=["frame", "sample"], value="frame")
|
818 |
+
|
819 |
+
with gr.Row():
|
820 |
+
exp_name = gr.Radio(label="Model", choices=["F5TTS_Base", "E2TTS_Base"], value="F5TTS_Base")
|
821 |
+
learning_rate = gr.Number(label="Learning Rate", value=1e-5, step=1e-5)
|
822 |
+
|
823 |
+
with gr.Row():
|
824 |
+
batch_size_per_gpu = gr.Number(label="Batch Size per GPU", value=1000)
|
825 |
+
max_samples = gr.Number(label="Max Samples", value=64)
|
826 |
+
|
827 |
+
with gr.Row():
|
828 |
+
grad_accumulation_steps = gr.Number(label="Gradient Accumulation Steps", value=1)
|
829 |
+
max_grad_norm = gr.Number(label="Max Gradient Norm", value=1.0)
|
830 |
+
|
831 |
+
with gr.Row():
|
832 |
+
epochs = gr.Number(label="Epochs", value=10)
|
833 |
+
num_warmup_updates = gr.Number(label="Warmup Updates", value=5)
|
834 |
+
|
835 |
+
with gr.Row():
|
836 |
+
save_per_updates = gr.Number(label="Save per Updates", value=10)
|
837 |
+
last_per_steps = gr.Number(label="Last per Steps", value=50)
|
838 |
+
|
839 |
+
with gr.Row():
|
840 |
+
start_button = gr.Button("Start Training")
|
841 |
+
stop_button = gr.Button("Stop Training", interactive=False)
|
842 |
+
|
843 |
+
txt_info_train = gr.Text(label="info", value="")
|
844 |
+
start_button.click(
|
845 |
+
fn=start_training,
|
846 |
+
inputs=[
|
847 |
+
project_name,
|
848 |
+
exp_name,
|
849 |
+
learning_rate,
|
850 |
+
batch_size_per_gpu,
|
851 |
+
batch_size_type,
|
852 |
+
max_samples,
|
853 |
+
grad_accumulation_steps,
|
854 |
+
max_grad_norm,
|
855 |
+
epochs,
|
856 |
+
num_warmup_updates,
|
857 |
+
save_per_updates,
|
858 |
+
last_per_steps,
|
859 |
+
ch_finetune,
|
860 |
+
],
|
861 |
+
outputs=[txt_info_train, start_button, stop_button],
|
862 |
+
)
|
863 |
+
stop_button.click(fn=stop_training, outputs=[txt_info_train, start_button, stop_button])
|
864 |
+
bt_calculate.click(
|
865 |
+
fn=calculate_train,
|
866 |
+
inputs=[
|
867 |
+
project_name,
|
868 |
+
batch_size_type,
|
869 |
+
max_samples,
|
870 |
+
learning_rate,
|
871 |
+
num_warmup_updates,
|
872 |
+
save_per_updates,
|
873 |
+
last_per_steps,
|
874 |
+
ch_finetune,
|
875 |
+
],
|
876 |
+
outputs=[
|
877 |
+
batch_size_per_gpu,
|
878 |
+
max_samples,
|
879 |
+
num_warmup_updates,
|
880 |
+
save_per_updates,
|
881 |
+
last_per_steps,
|
882 |
+
lb_samples,
|
883 |
+
learning_rate,
|
884 |
+
],
|
885 |
+
)
|
886 |
+
|
887 |
+
with gr.TabItem("reduse checkpoint"):
|
888 |
+
txt_path_checkpoint = gr.Text(label="path checkpoint :")
|
889 |
+
txt_path_checkpoint_small = gr.Text(label="path output :")
|
890 |
+
txt_info_reduse = gr.Text(label="info", value="")
|
891 |
+
reduse_button = gr.Button("reduse")
|
892 |
+
reduse_button.click(
|
893 |
+
fn=extract_and_save_ema_model,
|
894 |
+
inputs=[txt_path_checkpoint, txt_path_checkpoint_small],
|
895 |
+
outputs=[txt_info_reduse],
|
896 |
+
)
|
897 |
+
|
898 |
+
with gr.TabItem("vocab check experiment"):
|
899 |
+
check_button = gr.Button("check vocab")
|
900 |
+
txt_info_check = gr.Text(label="info", value="")
|
901 |
+
check_button.click(fn=vocab_check, inputs=[project_name], outputs=[txt_info_check])
|
902 |
+
|
903 |
+
with gr.TabItem("test model"):
|
904 |
+
exp_name = gr.Radio(label="Model", choices=["F5-TTS", "E2-TTS"], value="F5-TTS")
|
905 |
+
nfe_step = gr.Number(label="n_step", value=32)
|
906 |
+
file_checkpoint_pt = gr.Textbox(label="Checkpoint", value="")
|
907 |
+
|
908 |
+
random_sample_infer = gr.Button("random sample")
|
909 |
+
|
910 |
+
ref_text = gr.Textbox(label="ref text")
|
911 |
+
ref_audio = gr.Audio(label="audio ref", type="filepath")
|
912 |
+
gen_text = gr.Textbox(label="gen text")
|
913 |
+
random_sample_infer.click(
|
914 |
+
fn=get_random_sample_infer, inputs=[project_name], outputs=[ref_text, gen_text, ref_audio]
|
915 |
+
)
|
916 |
+
check_button_infer = gr.Button("infer")
|
917 |
+
gen_audio = gr.Audio(label="audio gen", type="filepath")
|
918 |
+
|
919 |
+
check_button_infer.click(
|
920 |
+
fn=infer,
|
921 |
+
inputs=[file_checkpoint_pt, exp_name, ref_text, ref_audio, gen_text, nfe_step],
|
922 |
+
outputs=[gen_audio],
|
923 |
+
)
|
924 |
+
|
925 |
+
|
926 |
+
@click.command()
|
927 |
+
@click.option("--port", "-p", default=None, type=int, help="Port to run the app on")
|
928 |
+
@click.option("--host", "-H", default=None, help="Host to run the app on")
|
929 |
+
@click.option(
|
930 |
+
"--share",
|
931 |
+
"-s",
|
932 |
+
default=False,
|
933 |
+
is_flag=True,
|
934 |
+
help="Share the app via Gradio share link",
|
935 |
+
)
|
936 |
+
@click.option("--api", "-a", default=True, is_flag=True, help="Allow API access")
|
937 |
+
def main(port, host, share, api):
|
938 |
+
global app
|
939 |
+
print("Starting app...")
|
940 |
+
app.queue(api_open=api).launch(server_name=host, server_port=port, share=share, show_api=api)
|
941 |
+
|
942 |
+
|
943 |
+
if __name__ == "__main__":
|
944 |
+
main()
|
gradio_app.py
ADDED
@@ -0,0 +1,824 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import torch
|
4 |
+
import torchaudio
|
5 |
+
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
+
import tempfile
|
8 |
+
from einops import rearrange
|
9 |
+
from vocos import Vocos
|
10 |
+
from pydub import AudioSegment, silence
|
11 |
+
from model import CFM, UNetT, DiT, MMDiT
|
12 |
+
from cached_path import cached_path
|
13 |
+
from model.utils import (
|
14 |
+
load_checkpoint,
|
15 |
+
get_tokenizer,
|
16 |
+
convert_char_to_pinyin,
|
17 |
+
save_spectrogram,
|
18 |
+
)
|
19 |
+
from transformers import pipeline
|
20 |
+
import librosa
|
21 |
+
import click
|
22 |
+
import soundfile as sf
|
23 |
+
|
24 |
+
try:
|
25 |
+
import spaces
|
26 |
+
USING_SPACES = True
|
27 |
+
except ImportError:
|
28 |
+
USING_SPACES = False
|
29 |
+
|
30 |
+
def gpu_decorator(func):
|
31 |
+
if USING_SPACES:
|
32 |
+
return spaces.GPU(func)
|
33 |
+
else:
|
34 |
+
return func
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
SPLIT_WORDS = [
|
39 |
+
"but", "however", "nevertheless", "yet", "still",
|
40 |
+
"therefore", "thus", "hence", "consequently",
|
41 |
+
"moreover", "furthermore", "additionally",
|
42 |
+
"meanwhile", "alternatively", "otherwise",
|
43 |
+
"namely", "specifically", "for example", "such as",
|
44 |
+
"in fact", "indeed", "notably",
|
45 |
+
"in contrast", "on the other hand", "conversely",
|
46 |
+
"in conclusion", "to summarize", "finally"
|
47 |
+
]
|
48 |
+
|
49 |
+
device = (
|
50 |
+
"cuda"
|
51 |
+
if torch.cuda.is_available()
|
52 |
+
else "mps" if torch.backends.mps.is_available() else "cpu"
|
53 |
+
)
|
54 |
+
|
55 |
+
print(f"Using {device} device")
|
56 |
+
|
57 |
+
pipe = pipeline(
|
58 |
+
"automatic-speech-recognition",
|
59 |
+
model="openai/whisper-large-v3-turbo",
|
60 |
+
torch_dtype=torch.float16,
|
61 |
+
device=device,
|
62 |
+
)
|
63 |
+
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
|
64 |
+
|
65 |
+
# --------------------- Settings -------------------- #
|
66 |
+
|
67 |
+
target_sample_rate = 24000
|
68 |
+
n_mel_channels = 100
|
69 |
+
hop_length = 256
|
70 |
+
target_rms = 0.1
|
71 |
+
nfe_step = 32 # 16, 32
|
72 |
+
cfg_strength = 2.0
|
73 |
+
ode_method = "euler"
|
74 |
+
sway_sampling_coef = -1.0
|
75 |
+
speed = 1.0
|
76 |
+
# fix_duration = 27 # None or float (duration in seconds)
|
77 |
+
fix_duration = None
|
78 |
+
|
79 |
+
|
80 |
+
def load_model(repo_name, exp_name, model_cls, model_cfg, ckpt_step):
|
81 |
+
ckpt_path = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
|
82 |
+
# ckpt_path = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors
|
83 |
+
vocab_char_map, vocab_size = get_tokenizer("Emilia_ZH_EN", "pinyin")
|
84 |
+
model = CFM(
|
85 |
+
transformer=model_cls(
|
86 |
+
**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels
|
87 |
+
),
|
88 |
+
mel_spec_kwargs=dict(
|
89 |
+
target_sample_rate=target_sample_rate,
|
90 |
+
n_mel_channels=n_mel_channels,
|
91 |
+
hop_length=hop_length,
|
92 |
+
),
|
93 |
+
odeint_kwargs=dict(
|
94 |
+
method=ode_method,
|
95 |
+
),
|
96 |
+
vocab_char_map=vocab_char_map,
|
97 |
+
).to(device)
|
98 |
+
|
99 |
+
model = load_checkpoint(model, ckpt_path, device, use_ema = True)
|
100 |
+
|
101 |
+
return model
|
102 |
+
|
103 |
+
|
104 |
+
# load models
|
105 |
+
F5TTS_model_cfg = dict(
|
106 |
+
dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4
|
107 |
+
)
|
108 |
+
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
109 |
+
|
110 |
+
F5TTS_ema_model = load_model(
|
111 |
+
"F5-TTS", "F5TTS_Base", DiT, F5TTS_model_cfg, 1200000
|
112 |
+
)
|
113 |
+
E2TTS_ema_model = load_model(
|
114 |
+
"E2-TTS", "E2TTS_Base", UNetT, E2TTS_model_cfg, 1200000
|
115 |
+
)
|
116 |
+
|
117 |
+
def split_text_into_batches(text, max_chars=200, split_words=SPLIT_WORDS):
|
118 |
+
if len(text.encode('utf-8')) <= max_chars:
|
119 |
+
return [text]
|
120 |
+
if text[-1] not in ['。', '.', '!', '!', '?', '?']:
|
121 |
+
text += '.'
|
122 |
+
|
123 |
+
sentences = re.split('([。.!?!?])', text)
|
124 |
+
sentences = [''.join(i) for i in zip(sentences[0::2], sentences[1::2])]
|
125 |
+
|
126 |
+
batches = []
|
127 |
+
current_batch = ""
|
128 |
+
|
129 |
+
def split_by_words(text):
|
130 |
+
words = text.split()
|
131 |
+
current_word_part = ""
|
132 |
+
word_batches = []
|
133 |
+
for word in words:
|
134 |
+
if len(current_word_part.encode('utf-8')) + len(word.encode('utf-8')) + 1 <= max_chars:
|
135 |
+
current_word_part += word + ' '
|
136 |
+
else:
|
137 |
+
if current_word_part:
|
138 |
+
# Try to find a suitable split word
|
139 |
+
for split_word in split_words:
|
140 |
+
split_index = current_word_part.rfind(' ' + split_word + ' ')
|
141 |
+
if split_index != -1:
|
142 |
+
word_batches.append(current_word_part[:split_index].strip())
|
143 |
+
current_word_part = current_word_part[split_index:].strip() + ' '
|
144 |
+
break
|
145 |
+
else:
|
146 |
+
# If no suitable split word found, just append the current part
|
147 |
+
word_batches.append(current_word_part.strip())
|
148 |
+
current_word_part = ""
|
149 |
+
current_word_part += word + ' '
|
150 |
+
if current_word_part:
|
151 |
+
word_batches.append(current_word_part.strip())
|
152 |
+
return word_batches
|
153 |
+
|
154 |
+
for sentence in sentences:
|
155 |
+
if len(current_batch.encode('utf-8')) + len(sentence.encode('utf-8')) <= max_chars:
|
156 |
+
current_batch += sentence
|
157 |
+
else:
|
158 |
+
# If adding this sentence would exceed the limit
|
159 |
+
if current_batch:
|
160 |
+
batches.append(current_batch)
|
161 |
+
current_batch = ""
|
162 |
+
|
163 |
+
# If the sentence itself is longer than max_chars, split it
|
164 |
+
if len(sentence.encode('utf-8')) > max_chars:
|
165 |
+
# First, try to split by colon
|
166 |
+
colon_parts = sentence.split(':')
|
167 |
+
if len(colon_parts) > 1:
|
168 |
+
for part in colon_parts:
|
169 |
+
if len(part.encode('utf-8')) <= max_chars:
|
170 |
+
batches.append(part)
|
171 |
+
else:
|
172 |
+
# If colon part is still too long, split by comma
|
173 |
+
comma_parts = re.split('[,,]', part)
|
174 |
+
if len(comma_parts) > 1:
|
175 |
+
current_comma_part = ""
|
176 |
+
for comma_part in comma_parts:
|
177 |
+
if len(current_comma_part.encode('utf-8')) + len(comma_part.encode('utf-8')) <= max_chars:
|
178 |
+
current_comma_part += comma_part + ','
|
179 |
+
else:
|
180 |
+
if current_comma_part:
|
181 |
+
batches.append(current_comma_part.rstrip(','))
|
182 |
+
current_comma_part = comma_part + ','
|
183 |
+
if current_comma_part:
|
184 |
+
batches.append(current_comma_part.rstrip(','))
|
185 |
+
else:
|
186 |
+
# If no comma, split by words
|
187 |
+
batches.extend(split_by_words(part))
|
188 |
+
else:
|
189 |
+
# If no colon, split by comma
|
190 |
+
comma_parts = re.split('[,,]', sentence)
|
191 |
+
if len(comma_parts) > 1:
|
192 |
+
current_comma_part = ""
|
193 |
+
for comma_part in comma_parts:
|
194 |
+
if len(current_comma_part.encode('utf-8')) + len(comma_part.encode('utf-8')) <= max_chars:
|
195 |
+
current_comma_part += comma_part + ','
|
196 |
+
else:
|
197 |
+
if current_comma_part:
|
198 |
+
batches.append(current_comma_part.rstrip(','))
|
199 |
+
current_comma_part = comma_part + ','
|
200 |
+
if current_comma_part:
|
201 |
+
batches.append(current_comma_part.rstrip(','))
|
202 |
+
else:
|
203 |
+
# If no comma, split by words
|
204 |
+
batches.extend(split_by_words(sentence))
|
205 |
+
else:
|
206 |
+
current_batch = sentence
|
207 |
+
|
208 |
+
if current_batch:
|
209 |
+
batches.append(current_batch)
|
210 |
+
|
211 |
+
return batches
|
212 |
+
|
213 |
+
def infer_batch(ref_audio, ref_text, gen_text_batches, exp_name, remove_silence, progress=gr.Progress()):
|
214 |
+
if exp_name == "F5-TTS":
|
215 |
+
ema_model = F5TTS_ema_model
|
216 |
+
elif exp_name == "E2-TTS":
|
217 |
+
ema_model = E2TTS_ema_model
|
218 |
+
|
219 |
+
audio, sr = ref_audio
|
220 |
+
if audio.shape[0] > 1:
|
221 |
+
audio = torch.mean(audio, dim=0, keepdim=True)
|
222 |
+
|
223 |
+
rms = torch.sqrt(torch.mean(torch.square(audio)))
|
224 |
+
if rms < target_rms:
|
225 |
+
audio = audio * target_rms / rms
|
226 |
+
if sr != target_sample_rate:
|
227 |
+
resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
|
228 |
+
audio = resampler(audio)
|
229 |
+
audio = audio.to(device)
|
230 |
+
|
231 |
+
generated_waves = []
|
232 |
+
spectrograms = []
|
233 |
+
|
234 |
+
for i, gen_text in enumerate(progress.tqdm(gen_text_batches)):
|
235 |
+
# Prepare the text
|
236 |
+
if len(ref_text[-1].encode('utf-8')) == 1:
|
237 |
+
ref_text = ref_text + " "
|
238 |
+
text_list = [ref_text + gen_text]
|
239 |
+
final_text_list = convert_char_to_pinyin(text_list)
|
240 |
+
|
241 |
+
# Calculate duration
|
242 |
+
ref_audio_len = audio.shape[-1] // hop_length
|
243 |
+
zh_pause_punc = r"。,、;:?!"
|
244 |
+
ref_text_len = len(ref_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, ref_text))
|
245 |
+
gen_text_len = len(gen_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, gen_text))
|
246 |
+
duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)
|
247 |
+
|
248 |
+
# inference
|
249 |
+
with torch.inference_mode():
|
250 |
+
generated, _ = ema_model.sample(
|
251 |
+
cond=audio,
|
252 |
+
text=final_text_list,
|
253 |
+
duration=duration,
|
254 |
+
steps=nfe_step,
|
255 |
+
cfg_strength=cfg_strength,
|
256 |
+
sway_sampling_coef=sway_sampling_coef,
|
257 |
+
)
|
258 |
+
|
259 |
+
generated = generated[:, ref_audio_len:, :]
|
260 |
+
generated_mel_spec = rearrange(generated, "1 n d -> 1 d n")
|
261 |
+
generated_wave = vocos.decode(generated_mel_spec.cpu())
|
262 |
+
if rms < target_rms:
|
263 |
+
generated_wave = generated_wave * rms / target_rms
|
264 |
+
|
265 |
+
# wav -> numpy
|
266 |
+
generated_wave = generated_wave.squeeze().cpu().numpy()
|
267 |
+
|
268 |
+
generated_waves.append(generated_wave)
|
269 |
+
spectrograms.append(generated_mel_spec[0].cpu().numpy())
|
270 |
+
|
271 |
+
# Combine all generated waves
|
272 |
+
final_wave = np.concatenate(generated_waves)
|
273 |
+
|
274 |
+
# Remove silence
|
275 |
+
if remove_silence:
|
276 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
277 |
+
sf.write(f.name, final_wave, target_sample_rate)
|
278 |
+
aseg = AudioSegment.from_file(f.name)
|
279 |
+
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500)
|
280 |
+
non_silent_wave = AudioSegment.silent(duration=0)
|
281 |
+
for non_silent_seg in non_silent_segs:
|
282 |
+
non_silent_wave += non_silent_seg
|
283 |
+
aseg = non_silent_wave
|
284 |
+
aseg.export(f.name, format="wav")
|
285 |
+
final_wave, _ = torchaudio.load(f.name)
|
286 |
+
final_wave = final_wave.squeeze().cpu().numpy()
|
287 |
+
|
288 |
+
# Create a combined spectrogram
|
289 |
+
combined_spectrogram = np.concatenate(spectrograms, axis=1)
|
290 |
+
|
291 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
|
292 |
+
spectrogram_path = tmp_spectrogram.name
|
293 |
+
save_spectrogram(combined_spectrogram, spectrogram_path)
|
294 |
+
|
295 |
+
return (target_sample_rate, final_wave), spectrogram_path
|
296 |
+
|
297 |
+
def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, custom_split_words=''):
|
298 |
+
if not custom_split_words.strip():
|
299 |
+
custom_words = [word.strip() for word in custom_split_words.split(',')]
|
300 |
+
global SPLIT_WORDS
|
301 |
+
SPLIT_WORDS = custom_words
|
302 |
+
|
303 |
+
print(gen_text)
|
304 |
+
|
305 |
+
gr.Info("Converting audio...")
|
306 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
307 |
+
aseg = AudioSegment.from_file(ref_audio_orig)
|
308 |
+
|
309 |
+
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500)
|
310 |
+
non_silent_wave = AudioSegment.silent(duration=0)
|
311 |
+
for non_silent_seg in non_silent_segs:
|
312 |
+
non_silent_wave += non_silent_seg
|
313 |
+
aseg = non_silent_wave
|
314 |
+
|
315 |
+
audio_duration = len(aseg)
|
316 |
+
if audio_duration > 15000:
|
317 |
+
gr.Warning("Audio is over 15s, clipping to only first 15s.")
|
318 |
+
aseg = aseg[:15000]
|
319 |
+
aseg.export(f.name, format="wav")
|
320 |
+
ref_audio = f.name
|
321 |
+
|
322 |
+
if not ref_text.strip():
|
323 |
+
gr.Info("No reference text provided, transcribing reference audio...")
|
324 |
+
ref_text = pipe(
|
325 |
+
ref_audio,
|
326 |
+
chunk_length_s=30,
|
327 |
+
batch_size=128,
|
328 |
+
generate_kwargs={"task": "transcribe"},
|
329 |
+
return_timestamps=False,
|
330 |
+
)["text"].strip()
|
331 |
+
gr.Info("Finished transcription")
|
332 |
+
else:
|
333 |
+
gr.Info("Using custom reference text...")
|
334 |
+
|
335 |
+
# Split the input text into batches
|
336 |
+
audio, sr = torchaudio.load(ref_audio)
|
337 |
+
max_chars = int(len(ref_text.encode('utf-8')) / (audio.shape[-1] / sr) * (30 - audio.shape[-1] / sr))
|
338 |
+
gen_text_batches = split_text_into_batches(gen_text, max_chars=max_chars)
|
339 |
+
print('ref_text', ref_text)
|
340 |
+
for i, gen_text in enumerate(gen_text_batches):
|
341 |
+
print(f'gen_text {i}', gen_text)
|
342 |
+
|
343 |
+
gr.Info(f"Generating audio using {exp_name} in {len(gen_text_batches)} batches")
|
344 |
+
return infer_batch((audio, sr), ref_text, gen_text_batches, exp_name, remove_silence)
|
345 |
+
|
346 |
+
def generate_podcast(script, speaker1_name, ref_audio1, ref_text1, speaker2_name, ref_audio2, ref_text2, exp_name, remove_silence):
|
347 |
+
# Split the script into speaker blocks
|
348 |
+
speaker_pattern = re.compile(f"^({re.escape(speaker1_name)}|{re.escape(speaker2_name)}):", re.MULTILINE)
|
349 |
+
speaker_blocks = speaker_pattern.split(script)[1:] # Skip the first empty element
|
350 |
+
|
351 |
+
generated_audio_segments = []
|
352 |
+
|
353 |
+
for i in range(0, len(speaker_blocks), 2):
|
354 |
+
speaker = speaker_blocks[i]
|
355 |
+
text = speaker_blocks[i+1].strip()
|
356 |
+
|
357 |
+
# Determine which speaker is talking
|
358 |
+
if speaker == speaker1_name:
|
359 |
+
ref_audio = ref_audio1
|
360 |
+
ref_text = ref_text1
|
361 |
+
elif speaker == speaker2_name:
|
362 |
+
ref_audio = ref_audio2
|
363 |
+
ref_text = ref_text2
|
364 |
+
else:
|
365 |
+
continue # Skip if the speaker is neither speaker1 nor speaker2
|
366 |
+
|
367 |
+
# Generate audio for this block
|
368 |
+
audio, _ = infer(ref_audio, ref_text, text, exp_name, remove_silence)
|
369 |
+
|
370 |
+
# Convert the generated audio to a numpy array
|
371 |
+
sr, audio_data = audio
|
372 |
+
|
373 |
+
# Save the audio data as a WAV file
|
374 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
|
375 |
+
sf.write(temp_file.name, audio_data, sr)
|
376 |
+
audio_segment = AudioSegment.from_wav(temp_file.name)
|
377 |
+
|
378 |
+
generated_audio_segments.append(audio_segment)
|
379 |
+
|
380 |
+
# Add a short pause between speakers
|
381 |
+
pause = AudioSegment.silent(duration=500) # 500ms pause
|
382 |
+
generated_audio_segments.append(pause)
|
383 |
+
|
384 |
+
# Concatenate all audio segments
|
385 |
+
final_podcast = sum(generated_audio_segments)
|
386 |
+
|
387 |
+
# Export the final podcast
|
388 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
|
389 |
+
podcast_path = temp_file.name
|
390 |
+
final_podcast.export(podcast_path, format="wav")
|
391 |
+
|
392 |
+
return podcast_path
|
393 |
+
|
394 |
+
def parse_speechtypes_text(gen_text):
|
395 |
+
# Pattern to find (Emotion)
|
396 |
+
pattern = r'\((.*?)\)'
|
397 |
+
|
398 |
+
# Split the text by the pattern
|
399 |
+
tokens = re.split(pattern, gen_text)
|
400 |
+
|
401 |
+
segments = []
|
402 |
+
|
403 |
+
current_emotion = 'Regular'
|
404 |
+
|
405 |
+
for i in range(len(tokens)):
|
406 |
+
if i % 2 == 0:
|
407 |
+
# This is text
|
408 |
+
text = tokens[i].strip()
|
409 |
+
if text:
|
410 |
+
segments.append({'emotion': current_emotion, 'text': text})
|
411 |
+
else:
|
412 |
+
# This is emotion
|
413 |
+
emotion = tokens[i].strip()
|
414 |
+
current_emotion = emotion
|
415 |
+
|
416 |
+
return segments
|
417 |
+
|
418 |
+
def update_speed(new_speed):
|
419 |
+
global speed
|
420 |
+
speed = new_speed
|
421 |
+
return f"Speed set to: {speed}"
|
422 |
+
|
423 |
+
with gr.Blocks() as app_credits:
|
424 |
+
gr.Markdown("""
|
425 |
+
# Credits
|
426 |
+
|
427 |
+
* [mrfakename](https://github.com/fakerybakery) for the original [online demo](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
|
428 |
+
* [RootingInLoad](https://github.com/RootingInLoad) for the podcast generation
|
429 |
+
""")
|
430 |
+
with gr.Blocks() as app_tts:
|
431 |
+
gr.Markdown("# Batched TTS")
|
432 |
+
ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
|
433 |
+
gen_text_input = gr.Textbox(label="Text to Generate", lines=10)
|
434 |
+
model_choice = gr.Radio(
|
435 |
+
choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS"
|
436 |
+
)
|
437 |
+
generate_btn = gr.Button("Synthesize", variant="primary")
|
438 |
+
with gr.Accordion("Advanced Settings", open=False):
|
439 |
+
ref_text_input = gr.Textbox(
|
440 |
+
label="Reference Text",
|
441 |
+
info="Leave blank to automatically transcribe the reference audio. If you enter text it will override automatic transcription.",
|
442 |
+
lines=2,
|
443 |
+
)
|
444 |
+
remove_silence = gr.Checkbox(
|
445 |
+
label="Remove Silences",
|
446 |
+
info="The model tends to produce silences, especially on longer audio. We can manually remove silences if needed. Note that this is an experimental feature and may produce strange results. This will also increase generation time.",
|
447 |
+
value=True,
|
448 |
+
)
|
449 |
+
split_words_input = gr.Textbox(
|
450 |
+
label="Custom Split Words",
|
451 |
+
info="Enter custom words to split on, separated by commas. Leave blank to use default list.",
|
452 |
+
lines=2,
|
453 |
+
)
|
454 |
+
speed_slider = gr.Slider(
|
455 |
+
label="Speed",
|
456 |
+
minimum=0.3,
|
457 |
+
maximum=2.0,
|
458 |
+
value=speed,
|
459 |
+
step=0.1,
|
460 |
+
info="Adjust the speed of the audio.",
|
461 |
+
)
|
462 |
+
speed_slider.change(update_speed, inputs=speed_slider)
|
463 |
+
|
464 |
+
audio_output = gr.Audio(label="Synthesized Audio")
|
465 |
+
spectrogram_output = gr.Image(label="Spectrogram")
|
466 |
+
|
467 |
+
generate_btn.click(
|
468 |
+
infer,
|
469 |
+
inputs=[
|
470 |
+
ref_audio_input,
|
471 |
+
ref_text_input,
|
472 |
+
gen_text_input,
|
473 |
+
model_choice,
|
474 |
+
remove_silence,
|
475 |
+
split_words_input,
|
476 |
+
],
|
477 |
+
outputs=[audio_output, spectrogram_output],
|
478 |
+
)
|
479 |
+
|
480 |
+
with gr.Blocks() as app_podcast:
|
481 |
+
gr.Markdown("# Podcast Generation")
|
482 |
+
speaker1_name = gr.Textbox(label="Speaker 1 Name")
|
483 |
+
ref_audio_input1 = gr.Audio(label="Reference Audio (Speaker 1)", type="filepath")
|
484 |
+
ref_text_input1 = gr.Textbox(label="Reference Text (Speaker 1)", lines=2)
|
485 |
+
|
486 |
+
speaker2_name = gr.Textbox(label="Speaker 2 Name")
|
487 |
+
ref_audio_input2 = gr.Audio(label="Reference Audio (Speaker 2)", type="filepath")
|
488 |
+
ref_text_input2 = gr.Textbox(label="Reference Text (Speaker 2)", lines=2)
|
489 |
+
|
490 |
+
script_input = gr.Textbox(label="Podcast Script", lines=10,
|
491 |
+
placeholder="Enter the script with speaker names at the start of each block, e.g.:\nSean: How did you start studying...\n\nMeghan: I came to my interest in technology...\nIt was a long journey...\n\nSean: That's fascinating. Can you elaborate...")
|
492 |
+
|
493 |
+
podcast_model_choice = gr.Radio(
|
494 |
+
choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS"
|
495 |
+
)
|
496 |
+
podcast_remove_silence = gr.Checkbox(
|
497 |
+
label="Remove Silences",
|
498 |
+
value=True,
|
499 |
+
)
|
500 |
+
generate_podcast_btn = gr.Button("Generate Podcast", variant="primary")
|
501 |
+
podcast_output = gr.Audio(label="Generated Podcast")
|
502 |
+
|
503 |
+
def podcast_generation(script, speaker1, ref_audio1, ref_text1, speaker2, ref_audio2, ref_text2, model, remove_silence):
|
504 |
+
return generate_podcast(script, speaker1, ref_audio1, ref_text1, speaker2, ref_audio2, ref_text2, model, remove_silence)
|
505 |
+
|
506 |
+
generate_podcast_btn.click(
|
507 |
+
podcast_generation,
|
508 |
+
inputs=[
|
509 |
+
script_input,
|
510 |
+
speaker1_name,
|
511 |
+
ref_audio_input1,
|
512 |
+
ref_text_input1,
|
513 |
+
speaker2_name,
|
514 |
+
ref_audio_input2,
|
515 |
+
ref_text_input2,
|
516 |
+
podcast_model_choice,
|
517 |
+
podcast_remove_silence,
|
518 |
+
],
|
519 |
+
outputs=podcast_output,
|
520 |
+
)
|
521 |
+
|
522 |
+
def parse_emotional_text(gen_text):
|
523 |
+
# Pattern to find (Emotion)
|
524 |
+
pattern = r'\((.*?)\)'
|
525 |
+
|
526 |
+
# Split the text by the pattern
|
527 |
+
tokens = re.split(pattern, gen_text)
|
528 |
+
|
529 |
+
segments = []
|
530 |
+
|
531 |
+
current_emotion = 'Regular'
|
532 |
+
|
533 |
+
for i in range(len(tokens)):
|
534 |
+
if i % 2 == 0:
|
535 |
+
# This is text
|
536 |
+
text = tokens[i].strip()
|
537 |
+
if text:
|
538 |
+
segments.append({'emotion': current_emotion, 'text': text})
|
539 |
+
else:
|
540 |
+
# This is emotion
|
541 |
+
emotion = tokens[i].strip()
|
542 |
+
current_emotion = emotion
|
543 |
+
|
544 |
+
return segments
|
545 |
+
|
546 |
+
with gr.Blocks() as app_emotional:
|
547 |
+
# New section for emotional generation
|
548 |
+
gr.Markdown(
|
549 |
+
"""
|
550 |
+
# Multiple Speech-Type Generation
|
551 |
+
|
552 |
+
This section allows you to upload different audio clips for each speech type. 'Regular' emotion is mandatory. You can add additional speech types by clicking the "Add Speech Type" button. Enter your text in the format shown below, and the system will generate speech using the appropriate emotions. If unspecified, the model will use the regular speech type. The current speech type will be used until the next speech type is specified.
|
553 |
+
|
554 |
+
**Example Input:**
|
555 |
+
|
556 |
+
(Regular) Hello, I'd like to order a sandwich please. (Surprised) What do you mean you're out of bread? (Sad) I really wanted a sandwich though... (Angry) You know what, darn you and your little shop, you suck! (Whisper) I'll just go back home and cry now. (Shouting) Why me?!
|
557 |
+
"""
|
558 |
+
)
|
559 |
+
|
560 |
+
gr.Markdown("Upload different audio clips for each speech type. 'Regular' emotion is mandatory. You can add additional speech types by clicking the 'Add Speech Type' button.")
|
561 |
+
|
562 |
+
# Regular speech type (mandatory)
|
563 |
+
with gr.Row():
|
564 |
+
regular_name = gr.Textbox(value='Regular', label='Speech Type Name', interactive=False)
|
565 |
+
regular_audio = gr.Audio(label='Regular Reference Audio', type='filepath')
|
566 |
+
regular_ref_text = gr.Textbox(label='Reference Text (Regular)', lines=2)
|
567 |
+
|
568 |
+
# Additional speech types (up to 9 more)
|
569 |
+
max_speech_types = 10
|
570 |
+
speech_type_names = []
|
571 |
+
speech_type_audios = []
|
572 |
+
speech_type_ref_texts = []
|
573 |
+
speech_type_delete_btns = []
|
574 |
+
|
575 |
+
for i in range(max_speech_types - 1):
|
576 |
+
with gr.Row():
|
577 |
+
name_input = gr.Textbox(label='Speech Type Name', visible=False)
|
578 |
+
audio_input = gr.Audio(label='Reference Audio', type='filepath', visible=False)
|
579 |
+
ref_text_input = gr.Textbox(label='Reference Text', lines=2, visible=False)
|
580 |
+
delete_btn = gr.Button("Delete", variant="secondary", visible=False)
|
581 |
+
speech_type_names.append(name_input)
|
582 |
+
speech_type_audios.append(audio_input)
|
583 |
+
speech_type_ref_texts.append(ref_text_input)
|
584 |
+
speech_type_delete_btns.append(delete_btn)
|
585 |
+
|
586 |
+
# Button to add speech type
|
587 |
+
add_speech_type_btn = gr.Button("Add Speech Type")
|
588 |
+
|
589 |
+
# Keep track of current number of speech types
|
590 |
+
speech_type_count = gr.State(value=0)
|
591 |
+
|
592 |
+
# Function to add a speech type
|
593 |
+
def add_speech_type_fn(speech_type_count):
|
594 |
+
if speech_type_count < max_speech_types - 1:
|
595 |
+
speech_type_count += 1
|
596 |
+
# Prepare updates for the components
|
597 |
+
name_updates = []
|
598 |
+
audio_updates = []
|
599 |
+
ref_text_updates = []
|
600 |
+
delete_btn_updates = []
|
601 |
+
for i in range(max_speech_types - 1):
|
602 |
+
if i < speech_type_count:
|
603 |
+
name_updates.append(gr.update(visible=True))
|
604 |
+
audio_updates.append(gr.update(visible=True))
|
605 |
+
ref_text_updates.append(gr.update(visible=True))
|
606 |
+
delete_btn_updates.append(gr.update(visible=True))
|
607 |
+
else:
|
608 |
+
name_updates.append(gr.update())
|
609 |
+
audio_updates.append(gr.update())
|
610 |
+
ref_text_updates.append(gr.update())
|
611 |
+
delete_btn_updates.append(gr.update())
|
612 |
+
else:
|
613 |
+
# Optionally, show a warning
|
614 |
+
# gr.Warning("Maximum number of speech types reached.")
|
615 |
+
name_updates = [gr.update() for _ in range(max_speech_types - 1)]
|
616 |
+
audio_updates = [gr.update() for _ in range(max_speech_types - 1)]
|
617 |
+
ref_text_updates = [gr.update() for _ in range(max_speech_types - 1)]
|
618 |
+
delete_btn_updates = [gr.update() for _ in range(max_speech_types - 1)]
|
619 |
+
return [speech_type_count] + name_updates + audio_updates + ref_text_updates + delete_btn_updates
|
620 |
+
|
621 |
+
add_speech_type_btn.click(
|
622 |
+
add_speech_type_fn,
|
623 |
+
inputs=speech_type_count,
|
624 |
+
outputs=[speech_type_count] + speech_type_names + speech_type_audios + speech_type_ref_texts + speech_type_delete_btns
|
625 |
+
)
|
626 |
+
|
627 |
+
# Function to delete a speech type
|
628 |
+
def make_delete_speech_type_fn(index):
|
629 |
+
def delete_speech_type_fn(speech_type_count):
|
630 |
+
# Prepare updates
|
631 |
+
name_updates = []
|
632 |
+
audio_updates = []
|
633 |
+
ref_text_updates = []
|
634 |
+
delete_btn_updates = []
|
635 |
+
|
636 |
+
for i in range(max_speech_types - 1):
|
637 |
+
if i == index:
|
638 |
+
name_updates.append(gr.update(visible=False, value=''))
|
639 |
+
audio_updates.append(gr.update(visible=False, value=None))
|
640 |
+
ref_text_updates.append(gr.update(visible=False, value=''))
|
641 |
+
delete_btn_updates.append(gr.update(visible=False))
|
642 |
+
else:
|
643 |
+
name_updates.append(gr.update())
|
644 |
+
audio_updates.append(gr.update())
|
645 |
+
ref_text_updates.append(gr.update())
|
646 |
+
delete_btn_updates.append(gr.update())
|
647 |
+
|
648 |
+
speech_type_count = max(0, speech_type_count - 1)
|
649 |
+
|
650 |
+
return [speech_type_count] + name_updates + audio_updates + ref_text_updates + delete_btn_updates
|
651 |
+
|
652 |
+
return delete_speech_type_fn
|
653 |
+
|
654 |
+
for i, delete_btn in enumerate(speech_type_delete_btns):
|
655 |
+
delete_fn = make_delete_speech_type_fn(i)
|
656 |
+
delete_btn.click(
|
657 |
+
delete_fn,
|
658 |
+
inputs=speech_type_count,
|
659 |
+
outputs=[speech_type_count] + speech_type_names + speech_type_audios + speech_type_ref_texts + speech_type_delete_btns
|
660 |
+
)
|
661 |
+
|
662 |
+
# Text input for the prompt
|
663 |
+
gen_text_input_emotional = gr.Textbox(label="Text to Generate", lines=10)
|
664 |
+
|
665 |
+
# Model choice
|
666 |
+
model_choice_emotional = gr.Radio(
|
667 |
+
choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS"
|
668 |
+
)
|
669 |
+
|
670 |
+
with gr.Accordion("Advanced Settings", open=False):
|
671 |
+
remove_silence_emotional = gr.Checkbox(
|
672 |
+
label="Remove Silences",
|
673 |
+
value=True,
|
674 |
+
)
|
675 |
+
|
676 |
+
# Generate button
|
677 |
+
generate_emotional_btn = gr.Button("Generate Emotional Speech", variant="primary")
|
678 |
+
|
679 |
+
# Output audio
|
680 |
+
audio_output_emotional = gr.Audio(label="Synthesized Audio")
|
681 |
+
|
682 |
+
def generate_emotional_speech(
|
683 |
+
regular_audio,
|
684 |
+
regular_ref_text,
|
685 |
+
gen_text,
|
686 |
+
*args,
|
687 |
+
):
|
688 |
+
num_additional_speech_types = max_speech_types - 1
|
689 |
+
speech_type_names_list = args[:num_additional_speech_types]
|
690 |
+
speech_type_audios_list = args[num_additional_speech_types:2 * num_additional_speech_types]
|
691 |
+
speech_type_ref_texts_list = args[2 * num_additional_speech_types:3 * num_additional_speech_types]
|
692 |
+
model_choice = args[3 * num_additional_speech_types]
|
693 |
+
remove_silence = args[3 * num_additional_speech_types + 1]
|
694 |
+
|
695 |
+
# Collect the speech types and their audios into a dict
|
696 |
+
speech_types = {'Regular': {'audio': regular_audio, 'ref_text': regular_ref_text}}
|
697 |
+
|
698 |
+
for name_input, audio_input, ref_text_input in zip(speech_type_names_list, speech_type_audios_list, speech_type_ref_texts_list):
|
699 |
+
if name_input and audio_input:
|
700 |
+
speech_types[name_input] = {'audio': audio_input, 'ref_text': ref_text_input}
|
701 |
+
|
702 |
+
# Parse the gen_text into segments
|
703 |
+
segments = parse_speechtypes_text(gen_text)
|
704 |
+
|
705 |
+
# For each segment, generate speech
|
706 |
+
generated_audio_segments = []
|
707 |
+
current_emotion = 'Regular'
|
708 |
+
|
709 |
+
for segment in segments:
|
710 |
+
emotion = segment['emotion']
|
711 |
+
text = segment['text']
|
712 |
+
|
713 |
+
if emotion in speech_types:
|
714 |
+
current_emotion = emotion
|
715 |
+
else:
|
716 |
+
# If emotion not available, default to Regular
|
717 |
+
current_emotion = 'Regular'
|
718 |
+
|
719 |
+
ref_audio = speech_types[current_emotion]['audio']
|
720 |
+
ref_text = speech_types[current_emotion].get('ref_text', '')
|
721 |
+
|
722 |
+
# Generate speech for this segment
|
723 |
+
audio, _ = infer(ref_audio, ref_text, text, model_choice, remove_silence, "")
|
724 |
+
sr, audio_data = audio
|
725 |
+
|
726 |
+
generated_audio_segments.append(audio_data)
|
727 |
+
|
728 |
+
# Concatenate all audio segments
|
729 |
+
if generated_audio_segments:
|
730 |
+
final_audio_data = np.concatenate(generated_audio_segments)
|
731 |
+
return (sr, final_audio_data)
|
732 |
+
else:
|
733 |
+
gr.Warning("No audio generated.")
|
734 |
+
return None
|
735 |
+
|
736 |
+
generate_emotional_btn.click(
|
737 |
+
generate_emotional_speech,
|
738 |
+
inputs=[
|
739 |
+
regular_audio,
|
740 |
+
regular_ref_text,
|
741 |
+
gen_text_input_emotional,
|
742 |
+
] + speech_type_names + speech_type_audios + speech_type_ref_texts + [
|
743 |
+
model_choice_emotional,
|
744 |
+
remove_silence_emotional,
|
745 |
+
],
|
746 |
+
outputs=audio_output_emotional,
|
747 |
+
)
|
748 |
+
|
749 |
+
# Validation function to disable Generate button if speech types are missing
|
750 |
+
def validate_speech_types(
|
751 |
+
gen_text,
|
752 |
+
regular_name,
|
753 |
+
*args
|
754 |
+
):
|
755 |
+
num_additional_speech_types = max_speech_types - 1
|
756 |
+
speech_type_names_list = args[:num_additional_speech_types]
|
757 |
+
|
758 |
+
# Collect the speech types names
|
759 |
+
speech_types_available = set()
|
760 |
+
if regular_name:
|
761 |
+
speech_types_available.add(regular_name)
|
762 |
+
for name_input in speech_type_names_list:
|
763 |
+
if name_input:
|
764 |
+
speech_types_available.add(name_input)
|
765 |
+
|
766 |
+
# Parse the gen_text to get the speech types used
|
767 |
+
segments = parse_emotional_text(gen_text)
|
768 |
+
speech_types_in_text = set(segment['emotion'] for segment in segments)
|
769 |
+
|
770 |
+
# Check if all speech types in text are available
|
771 |
+
missing_speech_types = speech_types_in_text - speech_types_available
|
772 |
+
|
773 |
+
if missing_speech_types:
|
774 |
+
# Disable the generate button
|
775 |
+
return gr.update(interactive=False)
|
776 |
+
else:
|
777 |
+
# Enable the generate button
|
778 |
+
return gr.update(interactive=True)
|
779 |
+
|
780 |
+
gen_text_input_emotional.change(
|
781 |
+
validate_speech_types,
|
782 |
+
inputs=[gen_text_input_emotional, regular_name] + speech_type_names,
|
783 |
+
outputs=generate_emotional_btn
|
784 |
+
)
|
785 |
+
with gr.Blocks() as app:
|
786 |
+
gr.Markdown(
|
787 |
+
"""
|
788 |
+
# E2/F5 TTS
|
789 |
+
|
790 |
+
This is a local web UI for F5 TTS with advanced batch processing support. This app supports the following TTS models:
|
791 |
+
|
792 |
+
* [F5-TTS](https://arxiv.org/abs/2410.06885) (A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching)
|
793 |
+
* [E2 TTS](https://arxiv.org/abs/2406.18009) (Embarrassingly Easy Fully Non-Autoregressive Zero-Shot TTS)
|
794 |
+
|
795 |
+
The checkpoints support English and Chinese.
|
796 |
+
|
797 |
+
If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s, and shortening your prompt.
|
798 |
+
|
799 |
+
**NOTE: Reference text will be automatically transcribed with Whisper if not provided. For best results, keep your reference clips short (<15s). Ensure the audio is fully uploaded before generating.**
|
800 |
+
"""
|
801 |
+
)
|
802 |
+
gr.TabbedInterface([app_tts, app_podcast, app_emotional, app_credits], ["TTS", "Podcast", "Multi-Style", "Credits"])
|
803 |
+
|
804 |
+
@click.command()
|
805 |
+
@click.option("--port", "-p", default=None, type=int, help="Port to run the app on")
|
806 |
+
@click.option("--host", "-H", default=None, help="Host to run the app on")
|
807 |
+
@click.option(
|
808 |
+
"--share",
|
809 |
+
"-s",
|
810 |
+
default=False,
|
811 |
+
is_flag=True,
|
812 |
+
help="Share the app via Gradio share link",
|
813 |
+
)
|
814 |
+
@click.option("--api", "-a", default=True, is_flag=True, help="Allow API access")
|
815 |
+
def main(port, host, share, api):
|
816 |
+
global app
|
817 |
+
print(f"Starting app...")
|
818 |
+
app.queue(api_open=api).launch(
|
819 |
+
server_name=host, server_port=port, share=share, show_api=api
|
820 |
+
)
|
821 |
+
|
822 |
+
|
823 |
+
if __name__ == "__main__":
|
824 |
+
main()
|
inference-cli.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import codecs
|
3 |
+
import re
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import soundfile as sf
|
8 |
+
import tomli
|
9 |
+
from cached_path import cached_path
|
10 |
+
|
11 |
+
from model import DiT, UNetT
|
12 |
+
from model.utils_infer import (
|
13 |
+
load_vocoder,
|
14 |
+
load_model,
|
15 |
+
preprocess_ref_audio_text,
|
16 |
+
infer_process,
|
17 |
+
remove_silence_for_generated_wav,
|
18 |
+
)
|
19 |
+
|
20 |
+
|
21 |
+
parser = argparse.ArgumentParser(
|
22 |
+
prog="python3 inference-cli.py",
|
23 |
+
description="Commandline interface for E2/F5 TTS with Advanced Batch Processing.",
|
24 |
+
epilog="Specify options above to override one or more settings from config.",
|
25 |
+
)
|
26 |
+
parser.add_argument(
|
27 |
+
"-c",
|
28 |
+
"--config",
|
29 |
+
help="Configuration file. Default=cli-config.toml",
|
30 |
+
default="inference-cli.toml",
|
31 |
+
)
|
32 |
+
parser.add_argument(
|
33 |
+
"-m",
|
34 |
+
"--model",
|
35 |
+
help="F5-TTS | E2-TTS",
|
36 |
+
)
|
37 |
+
parser.add_argument(
|
38 |
+
"-p",
|
39 |
+
"--ckpt_file",
|
40 |
+
help="The Checkpoint .pt",
|
41 |
+
)
|
42 |
+
parser.add_argument(
|
43 |
+
"-v",
|
44 |
+
"--vocab_file",
|
45 |
+
help="The vocab .txt",
|
46 |
+
)
|
47 |
+
parser.add_argument("-r", "--ref_audio", type=str, help="Reference audio file < 15 seconds.")
|
48 |
+
parser.add_argument("-s", "--ref_text", type=str, default="666", help="Subtitle for the reference audio.")
|
49 |
+
parser.add_argument(
|
50 |
+
"-t",
|
51 |
+
"--gen_text",
|
52 |
+
type=str,
|
53 |
+
help="Text to generate.",
|
54 |
+
)
|
55 |
+
parser.add_argument(
|
56 |
+
"-f",
|
57 |
+
"--gen_file",
|
58 |
+
type=str,
|
59 |
+
help="File with text to generate. Ignores --text",
|
60 |
+
)
|
61 |
+
parser.add_argument(
|
62 |
+
"-o",
|
63 |
+
"--output_dir",
|
64 |
+
type=str,
|
65 |
+
help="Path to output folder..",
|
66 |
+
)
|
67 |
+
parser.add_argument(
|
68 |
+
"--remove_silence",
|
69 |
+
help="Remove silence.",
|
70 |
+
)
|
71 |
+
parser.add_argument(
|
72 |
+
"--load_vocoder_from_local",
|
73 |
+
action="store_true",
|
74 |
+
help="load vocoder from local. Default: ../checkpoints/charactr/vocos-mel-24khz",
|
75 |
+
)
|
76 |
+
args = parser.parse_args()
|
77 |
+
|
78 |
+
config = tomli.load(open(args.config, "rb"))
|
79 |
+
|
80 |
+
ref_audio = args.ref_audio if args.ref_audio else config["ref_audio"]
|
81 |
+
ref_text = args.ref_text if args.ref_text != "666" else config["ref_text"]
|
82 |
+
gen_text = args.gen_text if args.gen_text else config["gen_text"]
|
83 |
+
gen_file = args.gen_file if args.gen_file else config["gen_file"]
|
84 |
+
if gen_file:
|
85 |
+
gen_text = codecs.open(gen_file, "r", "utf-8").read()
|
86 |
+
output_dir = args.output_dir if args.output_dir else config["output_dir"]
|
87 |
+
model = args.model if args.model else config["model"]
|
88 |
+
ckpt_file = args.ckpt_file if args.ckpt_file else ""
|
89 |
+
vocab_file = args.vocab_file if args.vocab_file else ""
|
90 |
+
remove_silence = args.remove_silence if args.remove_silence else config["remove_silence"]
|
91 |
+
wave_path = Path(output_dir) / "out.wav"
|
92 |
+
spectrogram_path = Path(output_dir) / "out.png"
|
93 |
+
vocos_local_path = "../checkpoints/charactr/vocos-mel-24khz"
|
94 |
+
|
95 |
+
vocos = load_vocoder(is_local=args.load_vocoder_from_local, local_path=vocos_local_path)
|
96 |
+
|
97 |
+
|
98 |
+
# load models
|
99 |
+
if model == "F5-TTS":
|
100 |
+
model_cls = DiT
|
101 |
+
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
102 |
+
if ckpt_file == "":
|
103 |
+
repo_name = "F5-TTS"
|
104 |
+
exp_name = "F5TTS_Base"
|
105 |
+
ckpt_step = 1200000
|
106 |
+
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
|
107 |
+
# ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors; local path
|
108 |
+
|
109 |
+
elif model == "E2-TTS":
|
110 |
+
model_cls = UNetT
|
111 |
+
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
112 |
+
if ckpt_file == "":
|
113 |
+
repo_name = "E2-TTS"
|
114 |
+
exp_name = "E2TTS_Base"
|
115 |
+
ckpt_step = 1200000
|
116 |
+
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
|
117 |
+
# ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors; local path
|
118 |
+
|
119 |
+
print(f"Using {model}...")
|
120 |
+
ema_model = load_model(model_cls, model_cfg, ckpt_file, vocab_file)
|
121 |
+
|
122 |
+
|
123 |
+
def main_process(ref_audio, ref_text, text_gen, model_obj, remove_silence):
|
124 |
+
main_voice = {"ref_audio": ref_audio, "ref_text": ref_text}
|
125 |
+
if "voices" not in config:
|
126 |
+
voices = {"main": main_voice}
|
127 |
+
else:
|
128 |
+
voices = config["voices"]
|
129 |
+
voices["main"] = main_voice
|
130 |
+
for voice in voices:
|
131 |
+
voices[voice]["ref_audio"], voices[voice]["ref_text"] = preprocess_ref_audio_text(
|
132 |
+
voices[voice]["ref_audio"], voices[voice]["ref_text"]
|
133 |
+
)
|
134 |
+
print("Voice:", voice)
|
135 |
+
print("Ref_audio:", voices[voice]["ref_audio"])
|
136 |
+
print("Ref_text:", voices[voice]["ref_text"])
|
137 |
+
|
138 |
+
generated_audio_segments = []
|
139 |
+
reg1 = r"(?=\[\w+\])"
|
140 |
+
chunks = re.split(reg1, text_gen)
|
141 |
+
reg2 = r"\[(\w+)\]"
|
142 |
+
for text in chunks:
|
143 |
+
match = re.match(reg2, text)
|
144 |
+
if match:
|
145 |
+
voice = match[1]
|
146 |
+
else:
|
147 |
+
print("No voice tag found, using main.")
|
148 |
+
voice = "main"
|
149 |
+
if voice not in voices:
|
150 |
+
print(f"Voice {voice} not found, using main.")
|
151 |
+
voice = "main"
|
152 |
+
text = re.sub(reg2, "", text)
|
153 |
+
gen_text = text.strip()
|
154 |
+
ref_audio = voices[voice]["ref_audio"]
|
155 |
+
ref_text = voices[voice]["ref_text"]
|
156 |
+
print(f"Voice: {voice}")
|
157 |
+
audio, final_sample_rate, spectragram = infer_process(ref_audio, ref_text, gen_text, model_obj)
|
158 |
+
generated_audio_segments.append(audio)
|
159 |
+
|
160 |
+
if generated_audio_segments:
|
161 |
+
final_wave = np.concatenate(generated_audio_segments)
|
162 |
+
with open(wave_path, "wb") as f:
|
163 |
+
sf.write(f.name, final_wave, final_sample_rate)
|
164 |
+
# Remove silence
|
165 |
+
if remove_silence:
|
166 |
+
remove_silence_for_generated_wav(f.name)
|
167 |
+
print(f.name)
|
168 |
+
|
169 |
+
|
170 |
+
main_process(ref_audio, ref_text, gen_text, ema_model, remove_silence)
|
inference-cli.toml
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# F5-TTS | E2-TTS
|
2 |
+
model = "F5-TTS"
|
3 |
+
ref_audio = "tests/ref_audio/test_en_1_ref_short.wav"
|
4 |
+
# If an empty "", transcribes the reference audio automatically.
|
5 |
+
ref_text = "Some call me nature, others call me mother nature."
|
6 |
+
gen_text = "I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring. Respect me and I'll nurture you; ignore me and you shall face the consequences."
|
7 |
+
# File with text to generate. Ignores the text above.
|
8 |
+
gen_file = ""
|
9 |
+
remove_silence = false
|
10 |
+
output_dir = "tests"
|
pyproject.toml
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[build-system]
|
2 |
+
requires = ["setuptools >= 61.0", "setuptools-scm>=8.0"]
|
3 |
+
build-backend = "setuptools.build_meta"
|
4 |
+
|
5 |
+
[project]
|
6 |
+
name = "f5-tts"
|
7 |
+
dynamic = ["version"]
|
8 |
+
description = "F5-TTS: A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching"
|
9 |
+
readme = "README.md"
|
10 |
+
license = {text = "MIT License"}
|
11 |
+
classifiers = [
|
12 |
+
"License :: OSI Approved :: MIT License",
|
13 |
+
"Operating System :: OS Independent",
|
14 |
+
"Programming Language :: Python :: 3",
|
15 |
+
]
|
16 |
+
dependencies = [
|
17 |
+
"accelerate>=0.33.0",
|
18 |
+
"bitsandbytes>0.37.0",
|
19 |
+
"cached_path",
|
20 |
+
"click",
|
21 |
+
"datasets",
|
22 |
+
"ema_pytorch>=0.5.2",
|
23 |
+
"gradio>=3.45.2",
|
24 |
+
"jieba",
|
25 |
+
"librosa",
|
26 |
+
"matplotlib",
|
27 |
+
"numpy<=1.26.4",
|
28 |
+
"pydub",
|
29 |
+
"pypinyin",
|
30 |
+
"safetensors",
|
31 |
+
"soundfile",
|
32 |
+
"tomli",
|
33 |
+
"torch>=2.0.0",
|
34 |
+
"torchaudio>=2.0.0",
|
35 |
+
"torchdiffeq",
|
36 |
+
"tqdm>=4.65.0",
|
37 |
+
"transformers",
|
38 |
+
"transformers_stream_generator",
|
39 |
+
"vocos",
|
40 |
+
"wandb",
|
41 |
+
"x_transformers>=1.31.14",
|
42 |
+
]
|
43 |
+
|
44 |
+
[project.optional-dependencies]
|
45 |
+
eval = [
|
46 |
+
"faster_whisper==0.10.1",
|
47 |
+
"funasr",
|
48 |
+
"jiwer",
|
49 |
+
"modelscope",
|
50 |
+
"zhconv",
|
51 |
+
"zhon",
|
52 |
+
]
|
53 |
+
|
54 |
+
[project.urls]
|
55 |
+
Homepage = "https://github.com/SWivid/F5-TTS"
|
56 |
+
|
57 |
+
[project.scripts]
|
58 |
+
"f5-tts_infer-cli" = "f5_tts.infer.infer_cli:main"
|
59 |
+
"f5-tts_infer-gradio" = "f5_tts.infer.infer_gradio:main"
|
60 |
+
"f5-tts_finetune-cli" = "f5_tts.train.finetune_cli:main"
|
61 |
+
"f5-tts_finetune-gradio" = "f5_tts.train.finetune_gradio:main"
|
requirements.txt
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchaudio
|
3 |
+
accelerate>=0.33.0
|
4 |
+
bitsandbytes>0.37.0
|
5 |
+
cached_path
|
6 |
+
click
|
7 |
+
datasets
|
8 |
+
ema_pytorch>=0.5.2
|
9 |
+
gradio
|
10 |
+
jieba
|
11 |
+
librosa
|
12 |
+
matplotlib
|
13 |
+
numpy<=1.26.4
|
14 |
+
pydub
|
15 |
+
pypinyin
|
16 |
+
safetensors
|
17 |
+
soundfile
|
18 |
+
tomli
|
19 |
+
torchdiffeq
|
20 |
+
tqdm>=4.65.0
|
21 |
+
transformers
|
22 |
+
vocos
|
23 |
+
wandb
|
24 |
+
x_transformers>=1.31.14
|
25 |
+
f5_tts @ git+https://huggingface.co/spaces/mrfakename/E2-F5-TTS
|
requirements_eval.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
faster_whisper
|
2 |
+
funasr
|
3 |
+
jiwer
|
4 |
+
zhconv
|
5 |
+
zhon
|
ruff.toml
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
line-length = 120
|
2 |
+
target-version = "py310"
|
3 |
+
|
4 |
+
[lint]
|
5 |
+
# Only ignore variables with names starting with "_".
|
6 |
+
dummy-variable-rgx = "^_.*$"
|
7 |
+
|
8 |
+
[lint.isort]
|
9 |
+
force-single-line = true
|
10 |
+
lines-after-imports = 2
|
speech_edit.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import torchaudio
|
6 |
+
from vocos import Vocos
|
7 |
+
|
8 |
+
from model import CFM, UNetT, DiT
|
9 |
+
from model.utils import (
|
10 |
+
load_checkpoint,
|
11 |
+
get_tokenizer,
|
12 |
+
convert_char_to_pinyin,
|
13 |
+
save_spectrogram,
|
14 |
+
)
|
15 |
+
|
16 |
+
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
17 |
+
|
18 |
+
|
19 |
+
# --------------------- Dataset Settings -------------------- #
|
20 |
+
|
21 |
+
target_sample_rate = 24000
|
22 |
+
n_mel_channels = 100
|
23 |
+
hop_length = 256
|
24 |
+
target_rms = 0.1
|
25 |
+
|
26 |
+
tokenizer = "pinyin"
|
27 |
+
dataset_name = "Emilia_ZH_EN"
|
28 |
+
|
29 |
+
|
30 |
+
# ---------------------- infer setting ---------------------- #
|
31 |
+
|
32 |
+
seed = None # int | None
|
33 |
+
|
34 |
+
exp_name = "F5TTS_Base" # F5TTS_Base | E2TTS_Base
|
35 |
+
ckpt_step = 1200000
|
36 |
+
|
37 |
+
nfe_step = 32 # 16, 32
|
38 |
+
cfg_strength = 2.0
|
39 |
+
ode_method = "euler" # euler | midpoint
|
40 |
+
sway_sampling_coef = -1.0
|
41 |
+
speed = 1.0
|
42 |
+
|
43 |
+
if exp_name == "F5TTS_Base":
|
44 |
+
model_cls = DiT
|
45 |
+
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
46 |
+
|
47 |
+
elif exp_name == "E2TTS_Base":
|
48 |
+
model_cls = UNetT
|
49 |
+
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
50 |
+
|
51 |
+
ckpt_path = f"ckpts/{exp_name}/model_{ckpt_step}.safetensors"
|
52 |
+
output_dir = "tests"
|
53 |
+
|
54 |
+
# [leverage https://github.com/MahmoudAshraf97/ctc-forced-aligner to get char level alignment]
|
55 |
+
# pip install git+https://github.com/MahmoudAshraf97/ctc-forced-aligner.git
|
56 |
+
# [write the origin_text into a file, e.g. tests/test_edit.txt]
|
57 |
+
# ctc-forced-aligner --audio_path "tests/ref_audio/test_en_1_ref_short.wav" --text_path "tests/test_edit.txt" --language "zho" --romanize --split_size "char"
|
58 |
+
# [result will be saved at same path of audio file]
|
59 |
+
# [--language "zho" for Chinese, "eng" for English]
|
60 |
+
# [if local ckpt, set --alignment_model "../checkpoints/mms-300m-1130-forced-aligner"]
|
61 |
+
|
62 |
+
audio_to_edit = "tests/ref_audio/test_en_1_ref_short.wav"
|
63 |
+
origin_text = "Some call me nature, others call me mother nature."
|
64 |
+
target_text = "Some call me optimist, others call me realist."
|
65 |
+
parts_to_edit = [
|
66 |
+
[1.42, 2.44],
|
67 |
+
[4.04, 4.9],
|
68 |
+
] # stard_ends of "nature" & "mother nature", in seconds
|
69 |
+
fix_duration = [
|
70 |
+
1.2,
|
71 |
+
1,
|
72 |
+
] # fix duration for "optimist" & "realist", in seconds
|
73 |
+
|
74 |
+
# audio_to_edit = "tests/ref_audio/test_zh_1_ref_short.wav"
|
75 |
+
# origin_text = "对,这就是我,万人敬仰的太乙真人。"
|
76 |
+
# target_text = "对,那就是你,万人敬仰的太白金星。"
|
77 |
+
# parts_to_edit = [[0.84, 1.4], [1.92, 2.4], [4.26, 6.26], ]
|
78 |
+
# fix_duration = None # use origin text duration
|
79 |
+
|
80 |
+
|
81 |
+
# -------------------------------------------------#
|
82 |
+
|
83 |
+
use_ema = True
|
84 |
+
|
85 |
+
if not os.path.exists(output_dir):
|
86 |
+
os.makedirs(output_dir)
|
87 |
+
|
88 |
+
# Vocoder model
|
89 |
+
local = False
|
90 |
+
if local:
|
91 |
+
vocos_local_path = "../checkpoints/charactr/vocos-mel-24khz"
|
92 |
+
vocos = Vocos.from_hparams(f"{vocos_local_path}/config.yaml")
|
93 |
+
state_dict = torch.load(f"{vocos_local_path}/pytorch_model.bin", weights_only=True, map_location=device)
|
94 |
+
vocos.load_state_dict(state_dict)
|
95 |
+
|
96 |
+
vocos.eval()
|
97 |
+
else:
|
98 |
+
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
|
99 |
+
|
100 |
+
# Tokenizer
|
101 |
+
vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)
|
102 |
+
|
103 |
+
# Model
|
104 |
+
model = CFM(
|
105 |
+
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
|
106 |
+
mel_spec_kwargs=dict(
|
107 |
+
target_sample_rate=target_sample_rate,
|
108 |
+
n_mel_channels=n_mel_channels,
|
109 |
+
hop_length=hop_length,
|
110 |
+
),
|
111 |
+
odeint_kwargs=dict(
|
112 |
+
method=ode_method,
|
113 |
+
),
|
114 |
+
vocab_char_map=vocab_char_map,
|
115 |
+
).to(device)
|
116 |
+
|
117 |
+
model = load_checkpoint(model, ckpt_path, device, use_ema=use_ema)
|
118 |
+
|
119 |
+
# Audio
|
120 |
+
audio, sr = torchaudio.load(audio_to_edit)
|
121 |
+
if audio.shape[0] > 1:
|
122 |
+
audio = torch.mean(audio, dim=0, keepdim=True)
|
123 |
+
rms = torch.sqrt(torch.mean(torch.square(audio)))
|
124 |
+
if rms < target_rms:
|
125 |
+
audio = audio * target_rms / rms
|
126 |
+
if sr != target_sample_rate:
|
127 |
+
resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
|
128 |
+
audio = resampler(audio)
|
129 |
+
offset = 0
|
130 |
+
audio_ = torch.zeros(1, 0)
|
131 |
+
edit_mask = torch.zeros(1, 0, dtype=torch.bool)
|
132 |
+
for part in parts_to_edit:
|
133 |
+
start, end = part
|
134 |
+
part_dur = end - start if fix_duration is None else fix_duration.pop(0)
|
135 |
+
part_dur = part_dur * target_sample_rate
|
136 |
+
start = start * target_sample_rate
|
137 |
+
audio_ = torch.cat((audio_, audio[:, round(offset) : round(start)], torch.zeros(1, round(part_dur))), dim=-1)
|
138 |
+
edit_mask = torch.cat(
|
139 |
+
(
|
140 |
+
edit_mask,
|
141 |
+
torch.ones(1, round((start - offset) / hop_length), dtype=torch.bool),
|
142 |
+
torch.zeros(1, round(part_dur / hop_length), dtype=torch.bool),
|
143 |
+
),
|
144 |
+
dim=-1,
|
145 |
+
)
|
146 |
+
offset = end * target_sample_rate
|
147 |
+
# audio = torch.cat((audio_, audio[:, round(offset):]), dim = -1)
|
148 |
+
edit_mask = F.pad(edit_mask, (0, audio.shape[-1] // hop_length - edit_mask.shape[-1] + 1), value=True)
|
149 |
+
audio = audio.to(device)
|
150 |
+
edit_mask = edit_mask.to(device)
|
151 |
+
|
152 |
+
# Text
|
153 |
+
text_list = [target_text]
|
154 |
+
if tokenizer == "pinyin":
|
155 |
+
final_text_list = convert_char_to_pinyin(text_list)
|
156 |
+
else:
|
157 |
+
final_text_list = [text_list]
|
158 |
+
print(f"text : {text_list}")
|
159 |
+
print(f"pinyin: {final_text_list}")
|
160 |
+
|
161 |
+
# Duration
|
162 |
+
ref_audio_len = 0
|
163 |
+
duration = audio.shape[-1] // hop_length
|
164 |
+
|
165 |
+
# Inference
|
166 |
+
with torch.inference_mode():
|
167 |
+
generated, trajectory = model.sample(
|
168 |
+
cond=audio,
|
169 |
+
text=final_text_list,
|
170 |
+
duration=duration,
|
171 |
+
steps=nfe_step,
|
172 |
+
cfg_strength=cfg_strength,
|
173 |
+
sway_sampling_coef=sway_sampling_coef,
|
174 |
+
seed=seed,
|
175 |
+
edit_mask=edit_mask,
|
176 |
+
)
|
177 |
+
print(f"Generated mel: {generated.shape}")
|
178 |
+
|
179 |
+
# Final result
|
180 |
+
generated = generated.to(torch.float32)
|
181 |
+
generated = generated[:, ref_audio_len:, :]
|
182 |
+
generated_mel_spec = generated.permute(0, 2, 1)
|
183 |
+
generated_wave = vocos.decode(generated_mel_spec.cpu())
|
184 |
+
if rms < target_rms:
|
185 |
+
generated_wave = generated_wave * rms / target_rms
|
186 |
+
|
187 |
+
save_spectrogram(generated_mel_spec[0].cpu().numpy(), f"{output_dir}/speech_edit_out.png")
|
188 |
+
torchaudio.save(f"{output_dir}/speech_edit_out.wav", generated_wave, target_sample_rate)
|
189 |
+
print(f"Generated wav: {generated_wave.shape}")
|
train.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from model import CFM, UNetT, DiT, Trainer
|
2 |
+
from model.utils import get_tokenizer
|
3 |
+
from model.dataset import load_dataset
|
4 |
+
|
5 |
+
|
6 |
+
# -------------------------- Dataset Settings --------------------------- #
|
7 |
+
|
8 |
+
target_sample_rate = 24000
|
9 |
+
n_mel_channels = 100
|
10 |
+
hop_length = 256
|
11 |
+
|
12 |
+
tokenizer = "pinyin" # 'pinyin', 'char', or 'custom'
|
13 |
+
tokenizer_path = None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
|
14 |
+
dataset_name = "Emilia_ZH_EN"
|
15 |
+
|
16 |
+
# -------------------------- Training Settings -------------------------- #
|
17 |
+
|
18 |
+
exp_name = "F5TTS_Base" # F5TTS_Base | E2TTS_Base
|
19 |
+
|
20 |
+
learning_rate = 7.5e-5
|
21 |
+
|
22 |
+
batch_size_per_gpu = 38400 # 8 GPUs, 8 * 38400 = 307200
|
23 |
+
batch_size_type = "frame" # "frame" or "sample"
|
24 |
+
max_samples = 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models
|
25 |
+
grad_accumulation_steps = 1 # note: updates = steps / grad_accumulation_steps
|
26 |
+
max_grad_norm = 1.0
|
27 |
+
|
28 |
+
epochs = 11 # use linear decay, thus epochs control the slope
|
29 |
+
num_warmup_updates = 20000 # warmup steps
|
30 |
+
save_per_updates = 50000 # save checkpoint per steps
|
31 |
+
last_per_steps = 5000 # save last checkpoint per steps
|
32 |
+
|
33 |
+
# model params
|
34 |
+
if exp_name == "F5TTS_Base":
|
35 |
+
wandb_resume_id = None
|
36 |
+
model_cls = DiT
|
37 |
+
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
38 |
+
elif exp_name == "E2TTS_Base":
|
39 |
+
wandb_resume_id = None
|
40 |
+
model_cls = UNetT
|
41 |
+
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
42 |
+
|
43 |
+
|
44 |
+
# ----------------------------------------------------------------------- #
|
45 |
+
|
46 |
+
|
47 |
+
def main():
|
48 |
+
if tokenizer == "custom":
|
49 |
+
tokenizer_path = tokenizer_path
|
50 |
+
else:
|
51 |
+
tokenizer_path = dataset_name
|
52 |
+
vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)
|
53 |
+
|
54 |
+
mel_spec_kwargs = dict(
|
55 |
+
target_sample_rate=target_sample_rate,
|
56 |
+
n_mel_channels=n_mel_channels,
|
57 |
+
hop_length=hop_length,
|
58 |
+
)
|
59 |
+
|
60 |
+
model = CFM(
|
61 |
+
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
|
62 |
+
mel_spec_kwargs=mel_spec_kwargs,
|
63 |
+
vocab_char_map=vocab_char_map,
|
64 |
+
)
|
65 |
+
|
66 |
+
trainer = Trainer(
|
67 |
+
model,
|
68 |
+
epochs,
|
69 |
+
learning_rate,
|
70 |
+
num_warmup_updates=num_warmup_updates,
|
71 |
+
save_per_updates=save_per_updates,
|
72 |
+
checkpoint_path=f"ckpts/{exp_name}",
|
73 |
+
batch_size=batch_size_per_gpu,
|
74 |
+
batch_size_type=batch_size_type,
|
75 |
+
max_samples=max_samples,
|
76 |
+
grad_accumulation_steps=grad_accumulation_steps,
|
77 |
+
max_grad_norm=max_grad_norm,
|
78 |
+
wandb_project="CFM-TTS",
|
79 |
+
wandb_run_name=exp_name,
|
80 |
+
wandb_resume_id=wandb_resume_id,
|
81 |
+
last_per_steps=last_per_steps,
|
82 |
+
)
|
83 |
+
|
84 |
+
train_dataset = load_dataset(dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs)
|
85 |
+
trainer.train(
|
86 |
+
train_dataset,
|
87 |
+
resumable_with_seed=666, # seed for shuffling dataset
|
88 |
+
)
|
89 |
+
|
90 |
+
|
91 |
+
if __name__ == "__main__":
|
92 |
+
main()
|