Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler | |
model_id = "gagong/Traditional-Korean-Painting-Model-v2.0" | |
scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") | |
pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.float16) | |
pipe = pipe.to("cuda") | |
# prompt = "a photo of an astronaut riding a horse on mars" | |
# image = pipe(prompt).images[0] | |
def generate_image(prompt): | |
if not pipe: | |
return "Model not loaded properly" | |
try: | |
image = pipe(prompt).images[0] | |
return image | |
except Exception as e: | |
print(f"Error generating image: {e}") | |
return "Error generating image" | |
# Gradio ์ธํฐํ์ด์ค ์ค์ | |
with gr.Blocks() as demo: | |
gr.Markdown("# Traditional Korean Painting Generator") | |
gr.Markdown("Enter a prompt to generate a traditional Korean painting.") | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox(label="Prompt", placeholder="Describe the scene...") | |
generate_btn = gr.Button("Generate") | |
with gr.Column(): | |
output_image = gr.Image(label="Generated Image", type="pil") | |
generate_btn.click(fn=generate_image, inputs=prompt, outputs=output_image) | |
if __name__ == "__main__": | |
demo.launch() | |